L1 retrotransposons exploit RNA m(6)A modification as an evolutionary driving force

Cited 30 time in webofscience Cited 0 time in scopus
  • Hit : 378
  • Download : 0
L1 retrotransposons can pose a threat to genome integrity. The host has evolved to restrict L1 replication. However, mechanisms underlying L1 propagation out of the host surveillance remains unclear. Here, we propose an evolutionary survival strategy of L1, which exploits RNA m(6)A modification. We discover that m(6)A 'writer' METTL3 facilitates L1 retrotransposition, whereas m(6)A 'eraser' ALKBH5 suppresses it. The essential m(6)A cluster that is located on L1 5 UTR serves as a docking site for eukaryotic initiation factor 3 (eIF3), enhances translational efficiency and promotes the formation of L1 ribonucleoprotein. Furthermore, through the comparative analysis of human- and primate-specific L1 lineages, we find that the most functional m(6)A motif-containing L1s have been positively selected and became a distinctive feature of evolutionarily young L1s. Thus, our findings demonstrate that L1 retrotransposons hijack the RNA m(6)A modification system for their successful replication. L1 is a group of active retrotransposons in humans. Here the authors show that m(6)A modifications on L1 RNA increase translation efficiency and retrotransposition in human cells. M(6)A motifs are more enriched in evolutionary young L1s.
Publisher
NATURE RESEARCH
Issue Date
2021-02
Language
English
Article Type
Article
Citation

NATURE COMMUNICATIONS, v.12, no.1

ISSN
2041-1723
DOI
10.1038/s41467-021-21197-1
URI
http://hdl.handle.net/10203/282202
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 30 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0