Modulation of the Electronic Properties of MXene (Ti3C2Tx) via Surface-Covalent Functionalization with Diazonium

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 37
  • Download : 0
The physical and chemical properties of MXenes are strongly dependent on surface terminations; thus, the tailoring of surface functional groups in two-dimensional transition-metal carbides (MXenes) may extend the applicability of these compelling materials to a wider set of fields. In this work, we demonstrate the chemical modification of Ti3C2Tx MXene via diazonium covalent chemistry and the subsequent effects on the electrical properties of MXene. The 4-nitrophenyl group was grafted onto the surface of MXene through a solid-liquid reaction, which was confirmed by various characterization methods, including X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, electron energy loss spectroscopy, atomic force microscopy, and transmission electron microscopy. The degree of modification of MXene is expediently tunable by adjusting the concentration of the diazonium salt solution. The work function of functionalized MXene is modifiable by regulating the quantity of grafted diazonium surface groups, with an adjustable range of around 0.6 eV. Further, in this study, the electrical properties of modified MXene are investigated through the fabrication of field-effect-transistor devices that utilize modified MXene as a channel material. It was demonstrated that with increasing concentration of 4-nitrophenyl groups grafted onto the surface the on/off current ratio of the modified MXene was improved to as much as 3.56, with a corresponding decrease in conductivity and mobility. The proposed approach of controlled modification of surface groups in Ti3C2Tx may imbue Ti3C2Tx with favorable electronic behaviors and demonstrate prospects for use in electronic field applications.
Publisher
AMER CHEMICAL SOC
Issue Date
2021-01
Language
English
Article Type
Article
Citation

ACS NANO, v.15, no.1, pp.1388 - 1396

ISSN
1936-0851
DOI
10.1021/acsnano.0c08664
URI
http://hdl.handle.net/10203/282167
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0