Low Reynolds number effects on aerodynamic loads of a small scale wind turbine

Cited 21 time in webofscience Cited 14 time in scopus
  • Hit : 258
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Hakjinko
dc.contributor.authorLee, Duck-Jooko
dc.date.accessioned2021-03-26T02:53:40Z-
dc.date.available2021-03-26T02:53:40Z-
dc.date.created2020-06-23-
dc.date.issued2020-07-
dc.identifier.citationRENEWABLE ENERGY, v.154, pp.1283 - 1293-
dc.identifier.issn0960-1481-
dc.identifier.urihttp://hdl.handle.net/10203/281990-
dc.description.abstractSmall-scale or scaled-down wind turbines for model experiments mostly operate in low-Reynolds-number flow. The nonlinear variations of aerodynamic coefficients with respect to the angle of attack caused by viscous effects and laminar boundary layer separation affect the wind turbine performance under these conditions. Although the vortex lattice method (VLM) is an efficient way to predict rotor performance, it tends to suffer from numerical error because nonlinear aerodynamic characteristics cannot be considered. In this study, the nonlinear vortex lattice method (NVLM) is adopted to compute the aerodynamic loads of two small-scale wind turbines. This method involves a sectional airfoil look-up table and vortex strength correction and can be applied to a wide range of operating conditions. The simulations of TU Delft and NTNU wind turbines are conducted to validate the prediction capability of numerical models by comparing predictions with the measurements. It was found that the overall results from the NVLM simulation are more accurate than the VLM results, which implies that the nonlinear aerodynamic characteristics associated with low-Reynolds-number flow should be considered to accurately assess the aerodynamic performance of small-sized wind-turbines, particularly at the low tip speed ratio at which the rotor blade may experience flow separation and dynamic stall.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.titleLow Reynolds number effects on aerodynamic loads of a small scale wind turbine-
dc.typeArticle-
dc.identifier.wosid000536955000108-
dc.identifier.scopusid2-s2.0-85082418762-
dc.type.rimsART-
dc.citation.volume154-
dc.citation.beginningpage1283-
dc.citation.endingpage1293-
dc.citation.publicationnameRENEWABLE ENERGY-
dc.identifier.doi10.1016/j.renene.2020.03.097-
dc.contributor.localauthorLee, Duck-Joo-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorSmall scale wind turbine-
dc.subject.keywordAuthorLow Reynolds number flow-
dc.subject.keywordAuthorNonlinear aerodynamic characteristics-
dc.subject.keywordAuthorWind turbine aerodynamics-
dc.subject.keywordAuthorNonlinear vortex lattice method-
dc.subject.keywordAuthorVortex particle method-
dc.subject.keywordPlusBLADE PRESSURE MEASUREMENTS-
dc.subject.keywordPlusWAKE VORTEX MODEL-
dc.subject.keywordPlusANGLE-OF-ATTACK-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSTOKES-
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 21 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0