Pd-catalyzed formal Mizoroki-Heck coupling of unactivated alkyl chlorides

Cited 50 time in webofscience Cited 24 time in scopus
  • Hit : 231
  • Download : 0
The use of alkyl chlorides in Pd-catalyzed Mizoroki-Heck coupling reactions remains an unsolved problem despite their significant potential for synthetic utility and applicability. The combination of the high thermodynamic barrier of alkyl chloride activation and kinetic propensity of alkylpalladium complexes to undergo undesired beta -hydride elimination provides significant challenges. Herein, a variety of alkyl chlorides, even tertiary chlorides, are shown to efficiently participate in Mizoroki-Heck cross-coupling reactions with excellent functional group compatibility under mild reaction conditions via photoinduced Pd catalysis. The reaction is applied to late-stage functionalizations of diverse biologically significant scaffolds and iterative double Mizoroki-Heck annulations, affording high molecular complexity in a single step. Notably, studies on the kinetic isotope effects in combination with density functional theory (DFT)-computations completely exclude the involvement of a previously proposed beta -hydride elimination in the catalytic cycle, revealing that the chlorine atom transfer process is the key catalytic turnover step. This distinctive single-electron transfer mediated reaction pathway resolves a longstanding challenge in traditional two-electron based Pd-catalyzed Mizoroki-Heck cross-coupling with alkyl electrophiles, wherein the beta -hydride elimination is involved in the formation of both the desired product and undesired by-products. The use of alkyl chlorides in Pd-catalyzed Mizoroki-Heck coupling reactions remains an unsolved problem despite their significant synthetic potential. Here, the authors show that alkyl chlorides can efficiently participate in Mizoroki-Heck cross-coupling reactions with excellent functional group compatibility via photoinduced Pd catalysis.
Publisher
NATURE RESEARCH
Issue Date
2021-02
Language
English
Article Type
Article
Citation

NATURE COMMUNICATIONS, v.12, no.1

ISSN
2041-1723
DOI
10.1038/s41467-021-21270-9
URI
http://hdl.handle.net/10203/281604
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 50 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0