Towards Robust Training of Multi-Sensor data Fusion Network Against Adversarial Examples in Semantic Segmentation

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 222
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorYu, Youngjoonko
dc.contributor.authorLee, Hong Jooko
dc.contributor.authorKim, Byeong Cheonko
dc.contributor.authorRo, Yong Manko
dc.date.accessioned2021-03-15T00:30:45Z-
dc.date.available2021-03-15T00:30:45Z-
dc.date.created2021-03-07-
dc.date.created2021-03-07-
dc.date.issued2021-06-07-
dc.identifier.citationIEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2021-
dc.identifier.urihttp://hdl.handle.net/10203/281508-
dc.languageEnglish-
dc.publisherIEEE Signal Processing Society-
dc.titleTowards Robust Training of Multi-Sensor data Fusion Network Against Adversarial Examples in Semantic Segmentation-
dc.typeConference-
dc.type.rimsCONF-
dc.citation.publicationnameIEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2021-
dc.identifier.conferencecountryCN-
dc.identifier.conferencelocationToronto, Ontario-
dc.contributor.localauthorRo, Yong Man-
dc.contributor.nonIdAuthorYu, Youngjoon-
dc.contributor.nonIdAuthorLee, Hong Joo-
dc.contributor.nonIdAuthorKim, Byeong Cheon-
Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0