Cubic Fokker-Planck-DSMC hybrid method for diatomic rarefied gas flow through a slit and an orifice

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 13
  • Download : 0
Fokker-Planck kinetic models have been devised as an approximation of the Boltzmann collision operator. Cubic Fokker-Planck-DSMC hybrid method is employed to simulate the diatomic gas flow through a thin slit and a thin orifice. Pressure driven nitrogen expansion gas flows with two different pressure ratios are investigated at Knudsen number 0.001. The DSMC method is physically accurate for all flow regime; however it is computationally expensive in high density or near continuum regions. The Fokker-Planck-DSMC hybrid scheme employs DSMC in rarefied regions and Fokker-Planck method in near continuum flow regions for an efficient and accurate solution. Numerical procedures of the cubic Fokker-Planck method are implemented within the framework of an existing DSMC-solver, SPARTA. The Fokker-Planck-DSMC hybrid solution reproduces pure DSMC solution with improved computational efficiency up to a factor of five for vacuum flow through a thin orifice. In addition, breakdown of translational equilibrium is investigated. Domain criterion of FP-DSMC is safely smaller than Bird's breakdown criterion.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2019-01
Language
English
Article Type
Article
Citation

VACUUM, v.159, pp.125 - 133

ISSN
0042-207X
DOI
10.1016/j.vacuum.2018.10.028
URI
http://hdl.handle.net/10203/280827
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0