Atomic-scale symmetry breaking for out-of-plane piezoelectricity in two-dimensional transition metal dichalcogenides

Cited 34 time in webofscience Cited 26 time in scopus
  • Hit : 190
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKang, Seunghunko
dc.contributor.authorKim, Serako
dc.contributor.authorJeon, Serako
dc.contributor.authorJang, Woo-Sungko
dc.contributor.authorSeol, Daeheeko
dc.contributor.authorKim, Young-Minko
dc.contributor.authorLee, Jaekwangko
dc.contributor.authorYang, Heejunko
dc.contributor.authorKim, Yunseokko
dc.date.accessioned2021-01-28T06:12:11Z-
dc.date.available2021-01-28T06:12:11Z-
dc.date.created2021-01-26-
dc.date.created2021-01-26-
dc.date.created2021-01-26-
dc.date.issued2019-04-
dc.identifier.citationNANO ENERGY, v.58, pp.57 - 62-
dc.identifier.issn2211-2855-
dc.identifier.urihttp://hdl.handle.net/10203/280207-
dc.description.abstractIt is known that only in-plane piezoelectricity exists in pristine two dimensional (2D) transition metal dichalcogenides (TMDs). In this study, we demonstrate the creation of strong out-of-plane piezoelectricity in semi-conducting 2H-MoTe2 flakes by an artificial atomic-scale symmetry breaking. The atomic-scale symmetry breaking associated with flexoelectricity was realized through Te vacancy formation by a simple thermal annealing of the 2D TMDs. The strong out-of-plane piezoelectricity was experimentally measured and confirmed by theoretical calculations. This strategy of atomic-scale symmetry modulation for out-of-plane piezoelectricity can be easily applied to a broader class of 2D TMD materials that have not been used for applications with out-of-plane piezoelectricity. Accordingly, it can stimulate the expansion of practical energy device applications with 2D TMD materials.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.titleAtomic-scale symmetry breaking for out-of-plane piezoelectricity in two-dimensional transition metal dichalcogenides-
dc.typeArticle-
dc.identifier.wosid000461433600007-
dc.identifier.scopusid2-s2.0-85059850173-
dc.type.rimsART-
dc.citation.volume58-
dc.citation.beginningpage57-
dc.citation.endingpage62-
dc.citation.publicationnameNANO ENERGY-
dc.identifier.doi10.1016/j.nanoen.2019.01.025-
dc.contributor.localauthorYang, Heejun-
dc.contributor.nonIdAuthorKang, Seunghun-
dc.contributor.nonIdAuthorKim, Sera-
dc.contributor.nonIdAuthorJeon, Sera-
dc.contributor.nonIdAuthorJang, Woo-Sung-
dc.contributor.nonIdAuthorSeol, Daehee-
dc.contributor.nonIdAuthorKim, Young-Min-
dc.contributor.nonIdAuthorLee, Jaekwang-
dc.contributor.nonIdAuthorKim, Yunseok-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle; Proceedings Paper-
dc.subject.keywordAuthorTransition metal dichalcogenides-
dc.subject.keywordAuthorTe vacancy-
dc.subject.keywordAuthorFlexoelectricity-
dc.subject.keywordAuthorOut-of-plane piezoelectricity-
dc.subject.keywordAuthorPiezoresponse force microscopy-
dc.subject.keywordPlusLAYER MOS2-
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 34 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0