Genus One Cobordisms Between Torus Knots

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 79
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorFeller, Peterko
dc.contributor.authorPark, JungHwanko
dc.date.accessioned2021-01-28T05:51:40Z-
dc.date.available2021-01-28T05:51:40Z-
dc.date.created2021-01-19-
dc.date.created2021-01-19-
dc.date.created2021-01-19-
dc.date.created2021-01-19-
dc.date.issued2021-01-
dc.identifier.citationInternational Mathematics Research Notices, v.2021, no.1, pp.521 - 548-
dc.identifier.issn1073-7928-
dc.identifier.urihttp://hdl.handle.net/10203/280014-
dc.description.abstractWe determine the pairs of torus knots that have a genus one cobordism between them, with one notable exception. This is done by combining obstructions using ν+ from the Heegaard Floer knot complex and explicit constructions of cobordisms. As an application, we determine the pairs of torus knots related by a single crossing change. Also, we determine the pairs of Thurston–Bennequin number maximizing Legendrian torus knots that have a genus one exact Lagrangian cobordism, with one exception.-
dc.languageEnglish-
dc.publisherOxford University Press-
dc.titleGenus One Cobordisms Between Torus Knots-
dc.typeArticle-
dc.type.rimsART-
dc.citation.volume2021-
dc.citation.issue1-
dc.citation.beginningpage521-
dc.citation.endingpage548-
dc.citation.publicationnameInternational Mathematics Research Notices-
dc.identifier.doi10.1093/imrn/rnaa027-
dc.contributor.localauthorPark, JungHwan-
dc.contributor.nonIdAuthorFeller, Peter-
dc.description.isOpenAccessN-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0