Synergistic Control of Structural Disorder and Surface Bonding Nature to Optimize the Functionality of Manganese Oxide as an Electrocatalyst and a Cathode for Li-O-2 Batteries

Cited 31 time in webofscience Cited 21 time in scopus
  • Hit : 178
  • Download : 0
An efficient way to improve the electrocatalyst and Li-O-2 battery performances of metal oxide is developed by an exquisite synergistic control over structural disorder and surface bonding nature. The effects of amorphous nature and surface chemical environment on the functionalities of metal oxide are systematically investigated with well-crystalline and amorphous MnO2 nanocrystals with/without surface anchoring of highly oxidized iodate clusters. The amorphous MnO2 nanocrystal containing anchored iodate clusters shows much better performance as an oxygen evolution electrocatalyst and cathode catalyst for Li-O-2 batteries than both iodate-free amorphous and well-crystalline homologues, underscoring the remarkable advantage of simultaneous enhancement of structural disorder and surface electron density. In situ X-ray absorption spectroscopic analysis demonstrates the promoted formation of double (Mn(sic)O) bond, a critical step of oxygen evolution reaction, upon amorphization caused by the poor orbital overlap inside highly disordered crystallites. The beneficial effects of iodate anchoring and amorphization on electrocatalyst functionality are attributable to the alteration of surface bonding character, stabilization of Jahn-Teller active Mn3+ species, and enhanced charge transfer of interfaces. The present study underscores that fine-tuning of structural disorder and surface bonding nature provides an effective methodology to explore efficient metal oxide-based electrocatalysts.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2020-03
Language
English
Article Type
Article
Citation

SMALL, v.16, no.12, pp.1903265

ISSN
1613-6810
DOI
10.1002/smll.201903265
URI
http://hdl.handle.net/10203/279551
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 31 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0