Effect of Fluid-Rock Interactions on In Situ Bacterial Alteration of Interfacial Properties and Wettability of CO2-Brine-Mineral Systems for Geologic Carbon Storage

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 69
  • Download : 12
This study explored the feasibility of biosurfactant amendment in modifying the interfacial characteristics of carbon dioxide (CO2) with rock minerals under high-pressure conditions for GCS. In particular, while varying the CO2 phase and the rock mineral, we quantitatively examined the production of biosurfactants by Bacillus subtilis and their effects on interfacial tension (IFT) and wettability in CO2-brine-mineral systems. The results demonstrated that surfactin produced by B. subtilis caused the reduction of CO2-brine IFT and modified the wettability of both quartz and calcite minerals to be more CO2-wet. The production yield of surfactin was substantially greater with the calcite mineral than with the quartz mineral. The calcite played the role of a pH buffer, consistently maintaining the brine pH above 6. By contrast, an acidic condition in CO2-brine-quartz systems caused the precipitation of surfactin, and hence surfactin lost its ability as a surface-active agent. Meanwhile, the CO2-driven mineral dissolution and precipitation in CO2-brine-calcite systems under a non-equilibrium system altered the solid substrates, produced surface roughness, and caused contact angle variations. These results provide unique experimental data on biosurfactant-mediated interfacial properties and wettability in GCS-relevant conditions, which support the exploitation of in situ biosurfactant production for biosurfactant-aided CO2 injection.
Publisher
AMER CHEMICAL SOC
Issue Date
2020-11
Language
English
Article Type
Article
Citation

ENVIRONMENTAL SCIENCE & TECHNOLOGY, v.54, no.23, pp.15355 - 15365

ISSN
0013-936X
DOI
10.1021/acs.est.0c05772
URI
http://hdl.handle.net/10203/279506
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
ParkYoonJungKwon2020.pdf(3.91 MB)Download

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0