An Ultrastretchable and Self-Healable Nanocomposite Conductor Enabled by Autonomously Percolative Electrical Pathways

Cited 56 time in webofscience Cited 0 time in scopus
  • Hit : 123
  • Download : 0
Both self-healable conductors and stretchable conductors have been previously reported. However, it is still difficult to simultaneously achieve high stretchability, high conductivity, and self-healability. Here, we observed an intriguing phenomenon, termed "electrical self-boosting", which enables reconstructing of electrically percolative pathways in an ultrastretchable and self-healable nano composite conductor (over 1700% strain). The autonomously reconstructed percolative pathways were directly verified by using micro computed tomography and in situ scanning electron microscopy. The encapsulated nanocomposite conductor shows exceptional conductivity (average value: 2578 S cm(-1); highest value: 3086 S cm(-1)) at 3500% tensile strain by virtue of efficient strain energy dissipation of the self-healing polymer and self-alignment and rearrangement of silver flakes surrounded by spontaneously formed silver nanoparticles and their self-assembly in the strained self-healing polymer matrix. In addition, the conductor maintains high conductivity and stretchability even after recovered from a complete cut. Besides, a design of double-layered conductor enabled by the self-bonding assembly allowed a conducting interface to be located on the neutral mechanical plane, showing extremely durable operations in a cyclic stretching test. Finally, we successfully demonstrated that electromyogram signals can be monitored by our self healable interconnects. Such information was transmitted to a prosthetic robot to control various hand motions for robust interactive human-robot interfaces.
Publisher
AMER CHEMICAL SOC
Issue Date
2019-06
Language
English
Article Type
Article
Citation

ACS NANO, v.13, no.6, pp.6531 - 6539

ISSN
1936-0851
DOI
10.1021/acsnano.9b00160
URI
http://hdl.handle.net/10203/279472
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 56 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0