On a rainbow version of Dirac's theorem

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 115
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorJoos, Felixko
dc.contributor.authorKim, Jaehoonko
dc.date.accessioned2020-12-31T02:10:22Z-
dc.date.available2020-12-31T02:10:22Z-
dc.date.created2020-06-02-
dc.date.created2020-06-02-
dc.date.created2020-06-02-
dc.date.issued2020-06-
dc.identifier.citationBULLETIN OF THE LONDON MATHEMATICAL SOCIETY, v.52, no.3, pp.498 - 504-
dc.identifier.issn0024-6093-
dc.identifier.urihttp://hdl.handle.net/10203/279378-
dc.description.abstractFor a collection G={G1,MIDLINE HORIZONTAL ELLIPSIS,Gs} of not necessarily distinct graphs on the same vertex set V, a graph H with vertices in V is a G-transversal if there exists a bijection phi:E(H)->[s] such that e is an element of E(G phi(e)) for all e is an element of E(H). We prove that for |V|=s > 3 and delta(Gi)> s/2 for each i is an element of[s], there exists a G-transversal that is a Hamilton cycle. This confirms a conjecture of Aharoni. We also prove an analogous result for perfect matchings.-
dc.languageEnglish-
dc.publisherWILEY-
dc.titleOn a rainbow version of Dirac's theorem-
dc.typeArticle-
dc.identifier.wosid000533659400001-
dc.identifier.scopusid2-s2.0-85085014112-
dc.type.rimsART-
dc.citation.volume52-
dc.citation.issue3-
dc.citation.beginningpage498-
dc.citation.endingpage504-
dc.citation.publicationnameBULLETIN OF THE LONDON MATHEMATICAL SOCIETY-
dc.identifier.doi10.1112/blms.12343-
dc.contributor.localauthorKim, Jaehoon-
dc.contributor.nonIdAuthorJoos, Felix-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthor05C38-
dc.subject.keywordAuthor05C45-
dc.subject.keywordAuthor05C70 (primary)-
dc.subject.keywordPlusMATCHINGS-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0