Enhancement of Energy Transfer Efficiency with Structural Control of Multichromophore Light-Harvesting Assembly

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 44
  • Download : 16
Multichromophore systems (MCSs) are envisioned as building blocks of molecular optoelectronic devices. While it is important to understand the characteristics of energy transfer in MCSs, the effect of multiple donors on energy transfer has not been understood completely, mainly due to the lack of a platform to investigate such an effect systematically. Here, a systematic study on how the number of donors (n(D)) and interchromophore distances affect the efficiency of energy transfer (eta(FRET)) is presented. Specifically,eta(FRET)is calculated for a series of model MCSs using simulations, a series of multiporphyrin dendrimers with systematic variation ofn(D)and interdonor distances is synthesized, and eta(FRET)s of those dendrimers using transient absorption spectroscopy are measured. The simulations predict eta(FRET)in the multiporphyrin dendrimers well. In particular, it is found that eta(FRET)is enhanced by donor-to-donor energy transfer only when structural heterogeneity exists in an MCS, and the relationships between the eta(FRET)enhancement and the structural parameters of the MCS are revealed.
Publisher
WILEY
Issue Date
2020-10
Language
English
Article Type
Article
Citation

ADVANCED SCIENCE, v.7, no.20

ISSN
2198-3844
DOI
10.1002/advs.202001623
URI
http://hdl.handle.net/10203/279350
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
000561189000001.pdf(3.45 MB)Download

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0