Morphing electronics enable neuromodulation in growing tissue

Cited 58 time in webofscience Cited 0 time in scopus
  • Hit : 133
  • Download : 0
Bioelectronics for modulating the nervous system have shown promise in treating neurological diseases(1-3). However, their fixed dimensions cannot accommodate rapid tissue growth(4,5) and may impair development(6). For infants, children and adolescents, once implanted devices are outgrown, additional surgeries are often needed for device replacement, leading to repeated interventions and complications(6-8). Here, we address this limitation with morphing electronics, which adapt to in vivo nerve tissue growth with minimal mechanical constraint. We design and fabricate multilayered morphing electronics, consisting of viscoplastic electrodes and a strain sensor that eliminate the stress at the interface between the electronics and growing tissue. The ability of morphing electronics to self-heal during implantation surgery allows a reconfigurable and seamless neural interface. During the fastest growth period in rats, morphing electronics caused minimal damage to the rat nerve, which grows 2.4-fold in diameter, and allowed chronic electrical stimulation and monitoring for 2 months without disruption of functional behavior. Morphing electronics offers a path toward growth-adaptive pediatric electronic medicine. Viscoplastic electronic devices adapt as nerves enlarge in growing animals.
Publisher
NATURE PUBLISHING GROUP
Issue Date
2020-09
Language
English
Article Type
Article
Citation

NATURE BIOTECHNOLOGY, v.38, no.9, pp.1031

ISSN
1087-0156
DOI
10.1038/s41587-020-0495-2
URI
http://hdl.handle.net/10203/279341
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 58 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0