The role of third cation doping on phase stability, carrier transport and carrier suppression in amorphous oxide semiconductors

Cited 16 time in webofscience Cited 8 time in scopus
  • Hit : 393
  • Download : 0
Amorphous oxide semiconductors (AOSs), specifically those based on ternary cation systems such as Ga-, Si-, and Hf-doped InZnO, have emerged as promising material candidates for application in next-gen transparent electronic and optoelectronic devices. Third cation-doping is a common method used during the manufacturing of amorphous oxide thin film transistors (TFTs), primarily with the intention of suppressing carrier generation during the fabrication of the channel layer of a transistor. However, the incorporation of a third cation species has been observed to negatively affect the carrier transport properties of the thin film, as it may act as an additional scattering center and subsequently lower the carrier mobility from similar to 20-40 cm(2)V(-1)s(-1)of In(2)O(3)or a binary cation system (i.e., InZnO) to similar to 1-10 cm(2)V(-1)s(-1). This study investigates the structural, electrical, optoelectronic, and chemical properties of the ternary cation material system, InAlZnO (IAZO). The optimized carrier mobility (Hall Effect) of Al-doped InZnO is shown to remain as high as similar to 25-45 cm(2)V(-1)s(-1). Furthermore, Al incorporation in InZnO proves to enhance the amorphous phase stability under thermal stresses when compared to baseline InZnO films. Thin film transistors integrating optimized IAZO as the channel layer are shown to demonstrate promisingly high field effect mobilities (similar to 18-20 cm(2)V(-1)s(-1)), as well as excellent drain current saturation and high drain current on/off ratios (>10(7)). The high mobility and improved amorphous phase stability suggest strong potential for IAZO incorporation in the next generation of high performance and sustainable optoelectronic devices such as transparent displays.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2020-10
Language
English
Article Type
Article
Citation

JOURNAL OF MATERIALS CHEMISTRY C, v.8, no.39, pp.13798 - 13810

ISSN
2050-7526
DOI
10.1039/d0tc02655g
URI
http://hdl.handle.net/10203/279200
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 16 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0