Successful In vivo Calcium Imaging with a Head-Mount Miniaturized Microscope in the Amygdala of Freely Behaving Mouse

Cited 3 time in webofscience Cited 3 time in scopus
  • Hit : 270
  • Download : 0
In vivo real-time monitoring of neuronal activities in freely moving animals is one of key approaches to link neuronal activity to behavior. For this purpose, an in vivo imaging technique that detects calcium transients in neurons using genetically encoded calcium indicators (GECIs), a miniaturized fluorescence microscope, and a gradient refractive index (GRIN) lens has been developed and successfully applied to many brain structures(1, 2, 3, 4,) (5, 6). This imaging technique is particularly powerful because it enables chronic simultaneous imaging of genetically defined cell populations for a long-term period up to several weeks. Although useful, this imaging technique has not been easily applied to brain structures that locate deep within the brain such as amygdala, an essential brain structure for emotional processing and associative fear memory(7). There are several factors that make it difficult to apply the imaging technique to the amygdala. For instance, motion artifacts usually occur more frequently during the imaging conducted in the deeper brain regions because a head-mount microscope implanted deep in the brain is relatively unstable. Another problem is that the lateral ventricle is positioned close to the implanted GRIN lens and its movement during respiration may cause highly irregular motion artifacts that cannot be easily corrected, which makes it difficult to form a stable imaging view. Furthermore, because cells in the amygdala are usually quiet at a resting or anesthetized state, it is hard to find and focus the target cells expressing GECI in the amygdala during baseplating procedure for later imaging. This protocol provides a helpful guideline for how to efficiently target cells expressing GECI in the amygdala with head-mount miniaturized microscope for successful in vivo calcium imaging in such a deeper brain region. It is noted that this protocol is based on a particular system (e.g., Inscopix) but not restricted to it.
Publisher
JOURNAL OF VISUALIZED EXPERIMENTS
Issue Date
2020-08
Language
English
Article Type
Article
Citation

JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, no.162

ISSN
1940-087X
DOI
10.3791/61659
URI
http://hdl.handle.net/10203/278919
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0