Globally Optimal Relative Pose Estimation for Camera on a Selfie Stick

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 11
  • Download : 0
Taking selfies has become a photographic trend nowadays. We envision the emergence of the video selfie capturing a short continuous video clip (or burst photography) of the user, themselves. A selfie stick is usually used, whereby a camera is mounted on a stick for taking selfie photos. In this scenario, we observe that the camera typically goes through a special trajectory along a sphere surface. Motivated by this observation, in this work, we propose an efficient and globally optimal relative camera pose estimation between a pair of two images captured by a camera mounted on a selfie stick. We exploit the special geometric structure of the camera motion constrained by a selfie stick and define its motion as spherical joint motion. By the new parametrization and calibration scheme, we show that the pose estimation problem can be reduced to a 3-DoF (degrees of freedom) search problem, instead of a generic 6-DoF problem. This allows us to derive a fast branch-and-bound global optimization, which guarantees a global optimum. Thereby, we achieve efficient and robust estimation even in the presence of outliers. By experiments on both synthetic and real-world data, we validate the performance as well as the guaranteed optimality of the proposed method.
IEEE International Conference on Robotics and Automation
Issue Date

IEEE International Conference on Robotics and Automation, pp.4983 - 4989

Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.


  • mendeley


rss_1.0 rss_2.0 atom_1.0