Nonvolatile and Neuromorphic Memory Devices Using Interfacial Traps in Two-Dimensional WSe2/MoTe2Stack Channel

Cited 40 time in webofscience Cited 20 time in scopus
  • Hit : 295
  • Download : 0
Very recently, stacked two-dimensional materials have been studied, focusing on the van der Waals interaction at their stack junction interface. Here, we report field effect transistors (FETs) with stacked transition metal dichalcogenide (TMD) channels, where the heterojunction interface between two TMDs appears useful for nonvolatile or neuromorphic memory FETs. A few nanometer-thin WSe2 and MoTe2 flakes are vertically stacked on the gate dielectric, and bottom p-MoTe2 performs as a channel for hole transport. Interestingly, the WSe2/MoTe2 stack interface functions as a hole trapping site where traps behave in a nonvolatile manner, although trapping/detrapping can be controlled by gate voltage (VGS). Memory retention after high VGS pulse appears longer than 10000 s, and the Program/Erase ratio in a drain current is higher than 200. Moreover, the traps are delicately controllable even with small VGS, which indicates that a neuromorphic memory is also possible with our heterojunction stack FETs. Our stack channel FET demonstrates neuromorphic memory behavior of ∼94% recognition accuracy.
Publisher
AMER CHEMICAL SOC
Issue Date
2020-09
Language
English
Article Type
Article
Citation

ACS NANO, v.14, no.9, pp.12064 - 12071

ISSN
1936-0851
DOI
10.1021/acsnano.0c05393
URI
http://hdl.handle.net/10203/278133
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 40 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0