Sparse decomposition light-field microscopy for high speed imaging of neuronal activity

Cited 39 time in webofscience Cited 25 time in scopus
  • Hit : 322
  • Download : 338
DC FieldValueLanguage
dc.contributor.authorYoon, Young-Gyuko
dc.contributor.authorWang, Zeguanko
dc.contributor.authorPak, Nikitako
dc.contributor.authorPark, Demianko
dc.contributor.authorDai, Peilunko
dc.contributor.authorKang, Jeong Seukko
dc.contributor.authorSuk, Ho-Junko
dc.contributor.authorSymvoulidis, Panagiotisko
dc.contributor.authorGuner-Ataman, Burcuko
dc.contributor.authorWang, Kaiko
dc.contributor.authorBoyden, Edward S.ko
dc.date.accessioned2020-11-30T05:50:05Z-
dc.date.available2020-11-30T05:50:05Z-
dc.date.created2020-10-23-
dc.date.created2020-10-23-
dc.date.issued2020-10-
dc.identifier.citationOPTICA, v.7, no.10, pp.1457 - 1468-
dc.identifier.issn2334-2536-
dc.identifier.urihttp://hdl.handle.net/10203/277723-
dc.description.abstractOne of the major challenges in large scale optical imaging of neuronal activity is to simultaneously achieve sufficient temporal and spatial resolution across a large volume. Here, we introduce sparse decomposition light-field microscopy (SDLFM), a computational imaging technique based on light-field microscopy (LFM) that takes algorithmic advantage of the high temporal resolution of LFM and the inherent temporal sparsity of spikes to improve effective spatial resolution and signal-to-noise ratios (SNRs). With increased effective spatial resolution and SNRs, neuronal activity at the single-cell level can be recovered over a large volume. We demonstrate the single-cell imaging capability of SDLFM with in vivo imaging of neuronal activity of whole brains of larval zebrafish with estimated lateral and axial resolutions of similar to 3.5 mu m and similar to 7.4 mu m, respectively, acquired at volumetric imaging rates up to 50 Hz. We also show that SDLFM increases the quality of neural imaging in adult fruit flies.-
dc.languageEnglish-
dc.publisherOPTICAL SOC AMER-
dc.titleSparse decomposition light-field microscopy for high speed imaging of neuronal activity-
dc.typeArticle-
dc.identifier.wosid000581027000037-
dc.identifier.scopusid2-s2.0-85096035423-
dc.type.rimsART-
dc.citation.volume7-
dc.citation.issue10-
dc.citation.beginningpage1457-
dc.citation.endingpage1468-
dc.citation.publicationnameOPTICA-
dc.identifier.doi10.1364/optica.392805-
dc.contributor.localauthorYoon, Young-Gyu-
dc.contributor.nonIdAuthorWang, Zeguan-
dc.contributor.nonIdAuthorPak, Nikita-
dc.contributor.nonIdAuthorPark, Demian-
dc.contributor.nonIdAuthorDai, Peilun-
dc.contributor.nonIdAuthorKang, Jeong Seuk-
dc.contributor.nonIdAuthorSuk, Ho-Jun-
dc.contributor.nonIdAuthorSymvoulidis, Panagiotis-
dc.contributor.nonIdAuthorGuner-Ataman, Burcu-
dc.contributor.nonIdAuthorWang, Kai-
dc.contributor.nonIdAuthorBoyden, Edward S.-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusNEURAL ACTIVITY-
dc.subject.keywordPlusCELLULAR RESOLUTION-
dc.subject.keywordPlusBRAIN ACTIVITY-
dc.subject.keywordPlusDECONVOLUTION-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 39 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0