Reverse Water-Gas Shift Chemical Looping Using a Core-Shell Structured Perovskite Oxygen Carrier

Cited 16 time in webofscience Cited 9 time in scopus
  • Hit : 451
  • Download : 448
DC FieldValueLanguage
dc.contributor.authorLee, Minbeomko
dc.contributor.authorKim, Yikyeomko
dc.contributor.authorLim, Hyun Sukko
dc.contributor.authorJo, Ayeongko
dc.contributor.authorKang, Dohyungko
dc.contributor.authorLee, Jae Wooko
dc.date.accessioned2020-11-20T00:50:09Z-
dc.date.available2020-11-20T00:50:09Z-
dc.date.created2020-10-14-
dc.date.created2020-10-14-
dc.date.created2020-10-14-
dc.date.created2020-10-14-
dc.date.issued2020-10-
dc.identifier.citationENERGIES, v.13, no.20, pp.5324-
dc.identifier.issn1996-1073-
dc.identifier.urihttp://hdl.handle.net/10203/277407-
dc.description.abstractReverse water–gas shift chemical looping (RWGS-CL) offers a promising means of converting the greenhouse gas of CO2 to CO because of its relatively low operating temperatures and high CO selectivity without any side product. This paper introduces a core–shell structured oxygen carrier for RWGS-CL. The prepared oxygen carrier consists of a metal oxide core and perovskite shell, which was confirmed by inductively coupled plasma mass spectroscopy (ICP-MS), XPS, and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) measurements. The perovskite-structured shell of the prepared oxygen carrier facilitates the formation and consumption of oxygen defects in the metal oxide core during H2-CO2 redox looping cycles. As a result, amounts of CO produced per unit weight of the core–shell structured oxygen carriers were higher than that of a simple perovskite oxygen carrier. Of the metal oxide cores tested, CeO2, NiO, Co3O4, and Co3O4-NiO, La0.75Sr0.25FeO3-encapsulated Co3O4-NiO was found to be the most promising oxygen carrier for RWGS-CL, because it was most productive in terms of CO production and exhibited long-term stability.-
dc.languageEnglish-
dc.publisherMDPI-
dc.titleReverse Water-Gas Shift Chemical Looping Using a Core-Shell Structured Perovskite Oxygen Carrier-
dc.typeArticle-
dc.identifier.wosid000586301100001-
dc.identifier.scopusid2-s2.0-85093119673-
dc.type.rimsART-
dc.citation.volume13-
dc.citation.issue20-
dc.citation.beginningpage5324-
dc.citation.publicationnameENERGIES-
dc.identifier.doi10.3390/en13205324-
dc.contributor.localauthorLee, Jae Woo-
dc.contributor.nonIdAuthorJo, Ayeong-
dc.contributor.nonIdAuthorKang, Dohyung-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorreverse water&amp-
dc.subject.keywordAuthor#8211-
dc.subject.keywordAuthorgas shift chemical looping (RWGS-CL)-
dc.subject.keywordAuthoroxygen carrier-
dc.subject.keywordAuthormetal oxide-
dc.subject.keywordAuthorperovskite-
dc.subject.keywordAuthorcore&amp-
dc.subject.keywordAuthor#8211-
dc.subject.keywordAuthorshell-
dc.subject.keywordPlusPARTIAL OXIDATION-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusSYNGAS PRODUCTION-
dc.subject.keywordPlusCO2 UTILIZATION-
dc.subject.keywordPlusREDOX CATALYST-
dc.subject.keywordPlusMETHANE-
dc.subject.keywordPlusCONVERSION-
dc.subject.keywordPlusSELECTIVITY-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusHYDROGEN-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 16 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0