Stem Cell Lineage Infidelity Drives Wound Repair and Cancer

Cited 231 time in webofscience Cited 173 time in scopus
  • Hit : 536
  • Download : 306
DC FieldValueLanguage
dc.contributor.authorGe, Yejingko
dc.contributor.authorGomez, Nicholas C.ko
dc.contributor.authorAdam, Rene C.ko
dc.contributor.authorNikolova, Mariako
dc.contributor.authorYang, Hanseulko
dc.contributor.authorVerma, Akankshako
dc.contributor.authorLu, Catherine Pei-Juko
dc.contributor.authorPolak, Lisako
dc.contributor.authorYuan, Shaopengko
dc.contributor.authorElemento, Olivierko
dc.contributor.authorFuchs, Elaineko
dc.date.accessioned2020-11-17T01:55:17Z-
dc.date.available2020-11-17T01:55:17Z-
dc.date.created2020-11-17-
dc.date.created2020-11-17-
dc.date.issued2017-05-
dc.identifier.citationCELL, v.169, no.4, pp.636 - 650-
dc.identifier.issn0092-8674-
dc.identifier.urihttp://hdl.handle.net/10203/277323-
dc.description.abstractTissue stem cells contribute to tissue regeneration and wound repair through cellular programs that can be hijacked by cancer cells. Here, we investigate such a phenomenon in skin, where during homeostasis, stem cells of the epidermis and hair follicle fuel their respective tissues. We find that breakdown of stem cell lineage confinement-granting privileges associated with both fates-is not only hallmark but also functional in cancer development. We show that lineage plasticity is critical in wound repair, where it operates transiently to redirect fates. Investigating mechanism, we discover that irrespective of cellular origin, lineage infidelity occurs in wounding when stress-responsive enhancers become activated and override homeostatic enhancers that govern lineage specificity. In cancer, stress-responsive transcription factor levels rise, causing lineage commanders to reach excess. When lineage and stress factors collaborate, they activate oncogenic enhancers that distinguish cancers from wounds.-
dc.languageEnglish-
dc.publisherCELL PRESS-
dc.titleStem Cell Lineage Infidelity Drives Wound Repair and Cancer-
dc.typeArticle-
dc.identifier.wosid000400560900010-
dc.identifier.scopusid2-s2.0-85018571651-
dc.type.rimsART-
dc.citation.volume169-
dc.citation.issue4-
dc.citation.beginningpage636-
dc.citation.endingpage650-
dc.citation.publicationnameCELL-
dc.identifier.doi10.1016/j.cell.2017.03.042-
dc.contributor.localauthorYang, Hanseul-
dc.contributor.nonIdAuthorGe, Yejing-
dc.contributor.nonIdAuthorGomez, Nicholas C.-
dc.contributor.nonIdAuthorAdam, Rene C.-
dc.contributor.nonIdAuthorNikolova, Maria-
dc.contributor.nonIdAuthorVerma, Akanksha-
dc.contributor.nonIdAuthorLu, Catherine Pei-Ju-
dc.contributor.nonIdAuthorPolak, Lisa-
dc.contributor.nonIdAuthorYuan, Shaopeng-
dc.contributor.nonIdAuthorElemento, Olivier-
dc.contributor.nonIdAuthorFuchs, Elaine-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusHAIR FOLLICLE-
dc.subject.keywordPlusTGF-BETA-
dc.subject.keywordPlusTRANSCRIPTION FACTORS-
dc.subject.keywordPlusTUMOR INITIATION-
dc.subject.keywordPlusTRANSGENIC MICE-
dc.subject.keywordPlusSELF-RENEWAL-
dc.subject.keywordPlusMOUSE SKIN-
dc.subject.keywordPlusCARCINOMA-
dc.subject.keywordPlusEPIDERMIS-
dc.subject.keywordPlusSOX9-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 231 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0