A system for bedside assistance that integrates a robotic bed and a mobile manipulator

Cited 10 time in webofscience Cited 7 time in scopus
  • Hit : 304
  • Download : 128
Various situations, such as injuries or long-term disabilities, can result in people receiving physical assistance while in bed. We present a robotic system for bedside assistance that consists of a robotic bed and a mobile manipulator (i.e., a wheeled robot with arms) that work together to provide better assistance. Many assistive tasks depend on moving with respect to the person's body, and the complementary physical and perceptual capabilities of the two robots help with respect to this general goal. The system provides autonomy for common tasks, as well as an interface for direct teleoperation of the two robots. Autonomy handles coarse motions of the robots by estimating the person's pose using a pressure sensing mat and then moving the robots to configurations optimized for the task. After completing these motions, the user is given fine control of the robots to complete the task. In an evaluation using a medical mannequin, we found that the robotic bed's motion and perception each improved the assistive robotic system's performance. The system achieved 100% success over 9 trials involving 3 tasks. Using the system with the bed movement or the body pose estimation capabilities turned off resulted in success in only 33% or 78% of the trials, respectively. We also evaluated our system with Henry Evans, a person with severe quadriplegia, in his home. In a formal test, Henry successfully used the bedside-assistance system to perform 3 different tasks, 5 times each, without any failures. Henry's feedback on the system was positive regarding usefulness and ease of use, and he noted benefits of using our system over fully manual teleoperation. Overall, our results suggest that a robotic bed and a mobile manipulator can work collaboratively to provide effective personal assistance and that the combination of the two robots is beneficial.
Publisher
PUBLIC LIBRARY SCIENCE
Issue Date
2019-10
Language
English
Article Type
Article
Citation

PLOS ONE, v.14, no.10

ISSN
1932-6203
DOI
10.1371/journal.pone.0221854
URI
http://hdl.handle.net/10203/277316
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
000532566600003.pdf(3.63 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0