Midcourse Guidance for Exoatmospheric Interception Using Response Surface Based Trajectory Shaping

Cited 12 time in webofscience Cited 8 time in scopus
  • Hit : 491
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorAnn, Sungjunko
dc.contributor.authorLee, Seokwonko
dc.contributor.authorKim, Youdanko
dc.contributor.authorAhn, Jaemyungko
dc.date.accessioned2020-11-16T02:55:12Z-
dc.date.available2020-11-16T02:55:12Z-
dc.date.created2020-11-03-
dc.date.created2020-11-03-
dc.date.issued2020-10-
dc.identifier.citationIEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, v.56, no.5, pp.3655 - 3673-
dc.identifier.issn0018-9251-
dc.identifier.urihttp://hdl.handle.net/10203/277288-
dc.description.abstractAn exoatmospheric midcourse guidance law is proposed to intercept a ballistic missile during the free-flight phase. The proposed guidance law generates a thrust direction command for an antiballistic missile to hit the target at the predicted intercept point. For the predicted intercept point, the zero-effort-miss and zero-effort-velocity are determined based on the solutions of the two-body orbital boundary/initial value problems. The intercept point is predicted by using the trajectory shaping parameter that combines the zero effort trajectory and minimum time trajectory. A response surface model for the minimum interception time is constructed as a database, which is the polynomial function of the initial condition. The response surface model provides a predicted minimum time interception position for the midcourse guidance. Case studies are performed to demonstrate the performance of the proposed guidance law considering various uncertainties.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleMidcourse Guidance for Exoatmospheric Interception Using Response Surface Based Trajectory Shaping-
dc.typeArticle-
dc.identifier.wosid000578773300023-
dc.identifier.scopusid2-s2.0-85079869605-
dc.type.rimsART-
dc.citation.volume56-
dc.citation.issue5-
dc.citation.beginningpage3655-
dc.citation.endingpage3673-
dc.citation.publicationnameIEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS-
dc.identifier.doi10.1109/TAES.2020.2976084-
dc.contributor.localauthorAhn, Jaemyung-
dc.contributor.nonIdAuthorAnn, Sungjun-
dc.contributor.nonIdAuthorLee, Seokwon-
dc.contributor.nonIdAuthorKim, Youdan-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorMissiles-
dc.subject.keywordAuthorResponse surface methodology-
dc.subject.keywordAuthorTrajectory-
dc.subject.keywordAuthorUncertainty-
dc.subject.keywordAuthorRockets-
dc.subject.keywordAuthorAtmospheric modeling-
dc.subject.keywordAuthorAntiballistic Missile-
dc.subject.keywordAuthorExoatmospheric Environment-
dc.subject.keywordAuthorMidcourse Guidance Law-
dc.subject.keywordAuthorResponse Surface Methodology-
dc.subject.keywordAuthorSolid Propellant Rocket-
dc.subject.keywordAuthorTrajectory Optimization-
dc.subject.keywordAuthorTrajectory Shaping-
dc.subject.keywordPlusNEURAL-NETWORKS-
dc.subject.keywordPlusMISSILES-
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0