Lissajous scanning structured illumination microscopy

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 65
  • Download : 2
High-resolution fluorescent microscopic imaging techniques are in high demand to observe detailed structures or dynamic mechanisms of biological samples. Structured illumination microscopy (SIM) has grabbed much attention in super-resolution imaging due to simple configuration, high compatibility with common fluorescent molecules, and fast image acquisition. Here, we report Lissajous scanning SIM (LS-SIM) by using a high fill-factor Lissajous scanning micromirror and laser beam modulation. The LS-SIM was realized by a Lissajous scanned structured illumination module, relay optics, and a conventional fluorescent microscope. The micromirror comprises an inner mirror and an outer frame, which are scanned at pseudo-resonance with electrostatic actuation. The biaxial scanning frequencies are selected by the frequency selection rule for high fill-factor (> 80%) Lissajous scanning. Structured illumination (SI) was then realized by modulating the intensity of a laser beam at the least common multiple (LCM) of the scanning frequencies. A compact Lissajous scanned SI module containing a fiber-optic collimator and Lissajous micromirror has been fully packaged and coupled with relay optics and a fiber-based diode pumped solid state (DPSS) laser including acousto-optic-modulator (ACM). Various structured images were obtained by shifting the phase and orientation of the illumination patterns and finally mounted with a conventional fluorescent microscope. The LS-SIM has experimentally demonstrated high-resolution fluorescent microscopic imaging of reference targets and human lung cancer cell PC-9 cells. The LS-SIM exhibits the observable region in spatial frequency space over 2x, the line-edge sharpness over 1.5x, and the peak-to-valley (P-V) ratio over 2x, compared to widefield fluorescent microscopy. This method can provide a new route for advanced high-resolution fluorescent microscopic imaging.
Publisher
OPTICAL SOC AMER
Issue Date
2020-10
Language
English
Article Type
Article
Citation

BIOMEDICAL OPTICS EXPRESS, v.11, no.10, pp.5575 - 5585

ISSN
2156-7085
DOI
10.1364/BOE.404220
URI
http://hdl.handle.net/10203/277286
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
000577572500015.pdf(1.94 MB)Download

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0