Thermoplasmonic Optical Fiber for Localized Neural Stimulation

Cited 31 time in webofscience Cited 18 time in scopus
  • Hit : 296
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKang, Hongkiko
dc.contributor.authorHong, Woongkiko
dc.contributor.authorAn, Yujinko
dc.contributor.authorYoo, Sang Jinko
dc.contributor.authorKwon, Hyuk-Junko
dc.contributor.authorNam, Yoonkeyko
dc.date.accessioned2020-11-03T05:55:15Z-
dc.date.available2020-11-03T05:55:15Z-
dc.date.created2020-10-30-
dc.date.created2020-10-30-
dc.date.issued2020-09-
dc.identifier.citationACS NANO, v.14, no.9, pp.11406 - 11419-
dc.identifier.issn1936-0851-
dc.identifier.urihttp://hdl.handle.net/10203/277078-
dc.description.abstractThermoplasmonic effect-based neural stimulation has been suggested as an alternative optical neural stimulation technology without genetic modification. Integration of near-infrared light with plasmonic gold nanoparticles has been demonstrated as a neuromodulation tool on in vitro neuronal network models. In order to further test the validity of the thermoplasmonic neural stimulation across multiple biological models (in vitro, ex vivo, and in vivo) avoiding genetic modification in optical neuromodulation, versatile engineering approaches to apply the thermoplasmonic effect would be required. In this work, we developed a gold nanorod attached optical fiber technology for the localized neural stimulation based on a thermoplasmonic effect. A simple fabrication process was developed for efficient nanoparticle coating on commercial optical fibers. The thermoplasmonic optical fiber proved that it can locally modulate the neural activity in vitro. Lastly, we simulated the spatiotemporal temperature change by the thermoplasmonic optical fiber and analyzed its applicability to in vivo animal models.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleThermoplasmonic Optical Fiber for Localized Neural Stimulation-
dc.typeArticle-
dc.identifier.wosid000576958900030-
dc.identifier.scopusid2-s2.0-85091598962-
dc.type.rimsART-
dc.citation.volume14-
dc.citation.issue9-
dc.citation.beginningpage11406-
dc.citation.endingpage11419-
dc.citation.publicationnameACS NANO-
dc.identifier.doi10.1021/acsnano.0c03703-
dc.contributor.localauthorNam, Yoonkey-
dc.contributor.nonIdAuthorKang, Hongki-
dc.contributor.nonIdAuthorHong, Woongki-
dc.contributor.nonIdAuthorKwon, Hyuk-Jun-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthoroptical neural stimulation-
dc.subject.keywordAuthorneuromodulation-
dc.subject.keywordAuthorthermoplasmonics-
dc.subject.keywordAuthorphotothermal effect-
dc.subject.keywordAuthoroptical fiber-
dc.subject.keywordAuthorgold nanorod-
dc.subject.keywordAuthormicroelctrode array-
dc.subject.keywordPlusSURFACE-PLASMON RESONANCE-
dc.subject.keywordPlusNEURONS-
dc.subject.keywordPlusOPTOGENETICS-
dc.subject.keywordPlusINHIBITION-
dc.subject.keywordPlusLIGHT-
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 31 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0