Vibrio cholerae-Symbiont Interactions Inhibit Intestinal Repair in Drosophila

Cited 27 time in webofscience Cited 18 time in scopus
  • Hit : 209
  • Download : 164
DC FieldValueLanguage
dc.contributor.authorFast, Davidko
dc.contributor.authorPetkau, Kristinako
dc.contributor.authorFerguson, Meghanko
dc.contributor.authorShin, Minjeongko
dc.contributor.authorGalenza, Anthonyko
dc.contributor.authorKostiuk, Benjaminko
dc.contributor.authorPukatzki, Stefanko
dc.contributor.authorFoley, Edanko
dc.date.accessioned2020-10-22T00:55:45Z-
dc.date.available2020-10-22T00:55:45Z-
dc.date.created2020-02-13-
dc.date.created2020-02-13-
dc.date.created2020-02-13-
dc.date.created2020-02-13-
dc.date.issued2020-01-
dc.identifier.citationCELL REPORTS, v.30, no.4, pp.1088+ - +-
dc.identifier.issn2211-1247-
dc.identifier.urihttp://hdl.handle.net/10203/276847-
dc.description.abstractPathogen-mediated damage to the intestinal epithelium activates compensatory growth and differentiation repair programs in progenitor cells. Accelerated progenitor growth replenishes damaged tissue and maintains barrier integrity. Despite the importance of epithelial renewal to intestinal homeostasis, we know little about the effects of pathogen-commensal interactions on progenitor growth. We find that the enteric pathogen Vibrio cholerae blocks critical growth and differentiation pathways in Drosophila progenitors, despite extensive damage to epithelial tissue. We show that the inhibition of epithelial repair requires interactions between the Vibrio cholerae type six secretion system and a community of common symbiotic bacteria, as elimination of the gut microbiome is sufficient to restore homeostatic growth in infected intestines. This work highlights the importance of pathogen-symbiont interactions for intestinal immune responses and outlines the impact of the type six secretion system on pathogenesis.-
dc.languageEnglish-
dc.publisherCELL PRESS-
dc.titleVibrio cholerae-Symbiont Interactions Inhibit Intestinal Repair in Drosophila-
dc.typeArticle-
dc.identifier.wosid000509775700013-
dc.identifier.scopusid2-s2.0-85078484654-
dc.type.rimsART-
dc.citation.volume30-
dc.citation.issue4-
dc.citation.beginningpage1088+-
dc.citation.endingpage+-
dc.citation.publicationnameCELL REPORTS-
dc.identifier.doi10.1016/j.celrep.2019.12.094-
dc.contributor.nonIdAuthorFast, David-
dc.contributor.nonIdAuthorPetkau, Kristina-
dc.contributor.nonIdAuthorFerguson, Meghan-
dc.contributor.nonIdAuthorGalenza, Anthony-
dc.contributor.nonIdAuthorKostiuk, Benjamin-
dc.contributor.nonIdAuthorPukatzki, Stefan-
dc.contributor.nonIdAuthorFoley, Edan-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusVI-SECRETION-SYSTEM-
dc.subject.keywordPlusDIFFERENTIAL EXPRESSION ANALYSIS-
dc.subject.keywordPlusIMMUNE-RESPONSES-
dc.subject.keywordPlusMICROBIOTA-
dc.subject.keywordPlusCELLS-
dc.subject.keywordPlusHOMEOSTASIS-
dc.subject.keywordPlusPROTEIN-
dc.subject.keywordPlusMIDGUT-
dc.subject.keywordPlusGENES-
dc.subject.keywordPlusREGENERATION-
Appears in Collection
Files in This Item
113264.pdf(5.4 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 27 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0