Asymptotically Stable Disturbance Observer-Based Compliance Control of Electrohydrostatic Actuators

Cited 18 time in webofscience Cited 10 time in scopus
  • Hit : 312
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Woongyongko
dc.contributor.authorKim, Min Junko
dc.contributor.authorChung, Wan Kyunko
dc.date.accessioned2020-08-21T02:55:04Z-
dc.date.available2020-08-21T02:55:04Z-
dc.date.created2020-08-21-
dc.date.created2020-08-21-
dc.date.created2020-08-21-
dc.date.created2020-08-21-
dc.date.created2020-08-21-
dc.date.created2020-08-21-
dc.date.created2020-08-21-
dc.date.issued2020-02-
dc.identifier.citationIEEE-ASME TRANSACTIONS ON MECHATRONICS, v.25, no.1, pp.195 - 206-
dc.identifier.issn1083-4435-
dc.identifier.urihttp://hdl.handle.net/10203/275899-
dc.description.abstractThis article proposes a disturbance observer (DOB)-based compliance control strategy for electrohydrostatic actuators (EHAs), particularly those with high gear reductions and long hydraulic pipelines, which could lead to a high performance interactive robot system. EHAs suffer significantly from internal leakage and friction, which hampers the application of existing compliance control methods to EHAs. Therefore, a two-degree-of-freedom (DoF) DOB is introduced to compensate for both undesirable effects separately; one degree of freedom handles friction observations and the other monitors internal leakage. Then, a compliance controller is designed without affecting the closed-loop stability. To this end, the state of the nominal plant, not the real plant, is used in the designs of the internal leakage observer and the compliance controller as it guarantees closed-loop stability. The asymptotic convergence of the closed-loop system is evaluated via simulations and experiments.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleAsymptotically Stable Disturbance Observer-Based Compliance Control of Electrohydrostatic Actuators-
dc.typeArticle-
dc.identifier.wosid000519587000019-
dc.identifier.scopusid2-s2.0-85076310855-
dc.type.rimsART-
dc.citation.volume25-
dc.citation.issue1-
dc.citation.beginningpage195-
dc.citation.endingpage206-
dc.citation.publicationnameIEEE-ASME TRANSACTIONS ON MECHATRONICS-
dc.identifier.doi10.1109/TMECH.2019.2958490-
dc.contributor.localauthorKim, Min Jun-
dc.contributor.nonIdAuthorLee, Woongyong-
dc.contributor.nonIdAuthorChung, Wan Kyun-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorRobots-
dc.subject.keywordAuthorHydraulic systems-
dc.subject.keywordAuthorFriction-
dc.subject.keywordAuthorHydraulic actuators-
dc.subject.keywordAuthorElectric motors-
dc.subject.keywordAuthorMechatronics-
dc.subject.keywordAuthorCompliance control-
dc.subject.keywordAuthorelectrohydrostatic actuator (EHA)-
dc.subject.keywordAuthortwo-degree-of-freedom (DoF) disturbance observer (DOB)-
dc.subject.keywordPlusFLEXIBLE-JOINT ROBOTS-
dc.subject.keywordPlusIMPEDANCE CONTROL-
dc.subject.keywordPlusELECTROHYDRAULIC ACTUATOR-
dc.subject.keywordPlusPOSITION-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusMANIPULATORS-
dc.subject.keywordPlusTORQUE-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 18 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0