Attachable micropseudocapacitors using highly swollen laser-induced-graphene electrodes

Cited 12 time in webofscience Cited 8 time in scopus
  • Hit : 261
  • Download : 0
For powering wearable electronics, extensive research has been directed toward microscale flexible and stretchable energy-storage devices. Microsupercapacitors, though promising candidates, remain limited in terms of design flexibility, scalability, reusability, and compatibility with general substrates. This paper reports a high-performance sticker-type flexible microsupercapacitor using highly swollen reduced-graphene-oxide electrodes fabricated by an ultrashort-pulse laser to promote full active-site and durability of the electrodes. Our sticker-type flexible micropseudocapacitor provides a comparable volumetric energy density of 1.08 mWh cm(-3) and 13 times higher volumetric power density of 83.5 mW cm(-3) compared to conventional lithium thin-film batteries. Bio-inspired surface modifications are additionally applied to the reduced-graphene-oxide electrodes, which provides a six-fold increase (10.38 mF cm(-2)) of the areal capacitance. A 6 x 2 micropseudocapacitor array embedded in a sub-millimeter thin PDMS film adheres to safety goggles and successfully powers a mu-LED. The total capacitance of the array is maintained at similar to 97% of its original value after 200 repetitive attachments and detachments showing good durability. In addition, the sticker-type micropseudocapacitor array shows a stable performance under repeated deformation, and up to similar to 99% of capacitance retention after 200 bending cycles. This novel re-attachable flexible micropseudocapacitor will expedite the widespread use of flexible and wearable devices.
Publisher
ELSEVIER SCIENCE SA
Issue Date
2020-04
Language
English
Article Type
Article
Citation

CHEMICAL ENGINEERING JOURNAL, v.386

ISSN
1385-8947
DOI
10.1016/j.cej.2019.123972
URI
http://hdl.handle.net/10203/275819
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0