Corrosion Behavior of Si Diffusion Coating on an Austenitic Fe-Base Alloy in High Temperature Supercritical-Carbon Dioxide and Steam Environment

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 28
  • Download : 2
In order to enhance corrosion resistance of stainless steel (SS) 316LN at high temperature environments, surface modification was carried out by Si deposition and subsequent heat treatment at 900 degrees C for 1 h. This resulted in the formation of Fe5Ni3Si2 phase on the surface region. The surface-modified alloy was exposed to high temperature S-CO2 (650 degrees C, 20 MPa) and steam (650 degrees C, 0.1 MPa) for 500 h and evaluated for its corrosion behavior in comparison to the as-received alloy. In S-CO2 environment, the as-received SS 316LN showed severe oxide spallation and thick Fe-rich oxide formation, while the surface-modified alloy formed a continuous and adherent Si- and Cr-rich oxide layer. In steam, as-received SS 316LN formed very thick duplex Fe- and Cr-rich oxide layers. On the other hand, surface-modified SS 316LN formed notably thinner oxides, which could be attributed to the formation of Si-rich oxide under outer Fe-rich oxides on the surface-modified alloy. Thus, in view of the weight changes, oxide thickness, and morphologies of the two conditions, it was found that Si diffusion coating was effective in improving the corrosion resistance of SS 316LN in both S-CO2 and steam environments.
Publisher
MDPI
Issue Date
2020-05
Language
English
Article Type
Article
Citation

COATINGS, v.10, no.5, pp.493

ISSN
2079-6412
DOI
10.3390/coatings10050493
URI
http://hdl.handle.net/10203/275508
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
Corrosion-behavior-of-Si-diffusion-coating-on-an-austenitic-Febase-alloy-in-high-temperature-supercriticalcarbon-dioxide-and-steam-environment2020CoatingsOpen-Access.pdf(5.07 MB)Download

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0