Discrete tonal noise of NACA0015 airfoil at low Reynolds number

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 343
  • Download : 0
This paper is a pilot study of the effect of external forcing and passive control on the generation of airfoil whistle noise. Interaction between instability travelling inside laminar boundary layer with the airfoil trailing edge produces discrete tonal noise. This phenomenon commonly found at low-to-moderate Reynolds numbers. The characteristics and behavior of tonal emissions at low Reynolds number differs from that at higher Reynolds number. Therefore, the purpose of this work is to study the discrete tonal noise generated by laminar boundary layer instability at low Reynolds number as well as at a variation of angle of attack. Experimental testing on NACA0015 was done in the anechoic wind tunnel to measure the sound spectrum at Reynolds number of Re~104 and angle of attack of 0°≤α≤5°. This work is intended to provide additional information to the tonal behavior of NACA series airfoil. Flow separation without reattachment occurs on the suction side within the selected Reynolds number and angle of attack. No tonal sound was found if fs falls below 40dB. At low Reynolds number, airfoil discrete tone consists of high intensity fs accompanied by more pronounced fn as freestream velocity increases. Airfoil tonal noise gradually decreases as angle of attack increases from α=0^° before disappearing beyond α=5°. Moreover, previously proposed empirical models to predict fs were found to have limitation in predicting tonal frequency at low Reynolds number at a variation of angle of attack. In addition, general observation shows fn has a velocity dependency of ~U0.8 while f_s is prone to exhibit ladder structure behavior with velocity dependency of ~U1.3. © 2019 Penerbit Akademia Baru.
Publisher
Penerbit Akademia Baru
Issue Date
2019-01
Language
English
Article Type
Article
Citation

Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, v.53, no.1, pp.129 - 145

ISSN
2289-7879
URI
http://hdl.handle.net/10203/275435
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0