Attitude Dynamics Model-Based Gyroless Attitude Estimation for Agile Spacecraft

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 200
  • Download : 0
With increasing demand for high-agility spacecraft, the importance of accurate attitude estimation in high-agility condition is gradually increasing. In previous high-cost spacecraft missions, high-quality gyroscopes were able to be employed and the conventional gyro-based Kalman filter has provided accurate attitude estimates. However, in low-cost missions such as CubeSat missions, high-quality gyroscopes usually cannot be adopted due to its expensive price and large size/power/mass, and this leads to performance degradation in high-agility condition. This proceeding presents a simple example that illustrates how high-agility condition induces performance degradation in a classical gyro-based Kalman filter framework. Then, an alternative attitude estimation method that is based on a model-based gyroless Kalman filter framework is proposed. Numerical results demonstrate that the proposed gyroless filter could exhibit comparable attitude estimation performance, compared to the gyro-based filter, when gyro performance belongs to an industrial grade (such as MEMS gyros). The proposed gyroless filter could be implemented as a main attitude estimation method or as a backup estimation method, depending on available gyros' performance.
Publisher
IEEE
Issue Date
2018-10
Language
English
Citation

18th International Conference on Control, Automation and Systems (ICCAS), pp.1429 - 1434

ISSN
2093-7121
URI
http://hdl.handle.net/10203/274921
Appears in Collection
AE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0