Densely Distilled Flow-Based Knowledge Transfer in Teacher-Student Framework for Image Classification

Cited 11 time in webofscience Cited 11 time in scopus
  • Hit : 294
  • Download : 0
We propose a new teacher-student framework (TSF)-based knowledge transfer method, in which knowledge in the form of dense flow across layers is distilled from a pre-trained "teacher" deep neural network (DNN) and transferred to another "student" DNN. In the case of distilled knowledge, multiple overlapped flow-based items of information from the pre-trained teacher DNN are densely extracted across layers. Transference of the densely extracted teacher information is then achieved in the TSF using repetitive sequential training from bottom to top between the teacher and student DNN models. In other words, to efficiently transmit extracted useful teacher information to the student DNN, we perform bottom-up step-by-step transfer of densely distilled knowledge. The performance of the proposed method in terms of image classification accuracy and fast optimization is compared with those of existing TSF-based knowledge transfer methods for application to reliable image datasets, including CIFAR-10, CIFAR-100, MNIST, and SVHN. When the dense flow-based sequential knowledge transfer scheme is employed in the TSF, the trained student ResNet more accurately reflects the rich information of the pre-trained teacher ResNet and exhibits superior accuracy to the existing TSF-based knowledge transfer methods for all benchmark datasets considered in this study.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2020-04
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON IMAGE PROCESSING, v.29, pp.5698 - 5710

ISSN
1057-7149
DOI
10.1109/TIP.2020.2984362
URI
http://hdl.handle.net/10203/274245
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0