Effects of ignition disturbance on flame propagation of methane and propane in a narrow-gap-disk-burner

Cited 5 time in webofscience Cited 3 time in scopus
  • Hit : 480
  • Download : 0
Unsteady flame propagation within a narrow channel, namely a Hele-Shaw burner, exhibits complicated phenomena. Recently, a new narrow-gap-disk-burner (NGDB) was developed, of which the disk-gap could be varied continuously and precisely. Although various complicated flame structures have been observed successfully, their dependency on the initial ignition has not been clarified. In this study, the volume of the ignition part was varied to introduce disturbance at the ignition stage, and the propagation characteristics of premixed methane and propane flames were investigated. Conclusively, quenching distance was not significantly affected by the ignition volume, especially in propane-rich conditions. In contrast, the flame structure and propagation velocity were sensitive to the ignition volume if it was larger than a critical volume, and when the disk-gap was approximately 1.5 times the quenching distance. A strong initial disturbance could generate complicated cellular structures coupled not only with shear stress but also with heat transfer. These cellular structures could increase the flame propagation velocity when the Lewis number was sufficiently smaller than unity. In contrast, the flame shape became smoother when the disk-gap was sufficiently larger than the quenching distance. Thus, the flame propagation velocity was comparable to the laminar burning velocity when it was less affected by the initial disturbance.
Publisher
ELSEVIER SCIENCE INC
Issue Date
2020-05
Language
English
Article Type
Article
Citation

COMBUSTION AND FLAME, v.215, pp.124 - 133

ISSN
0010-2180
DOI
10.1016/j.combustflame.2020.01.019
URI
http://hdl.handle.net/10203/274024
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0