Diagnosis Prediction via Medical Context Attention Networks Using Deep Generative Modeling

Cited 28 time in webofscience Cited 22 time in scopus
  • Hit : 375
  • Download : 0
Predicting the clinical outcome of patients from the historical electronic health records (EHRs) is a fundamental research area in medical informatics. Although EHRs contain various records associated with each patient, the existing work mainly dealt with the diagnosis codes by employing recurrent neural networks (RNNs) with a simple attention mechanism. This type of sequence modeling often ignores the heterogeneity of EHRs. In other words, it only considers historical diagnoses and does not incorporate patient demographics, which correspond to clinically essential context, into the sequence modeling. To address the issue, we aim at investigating the use of an attention mechanism that is tailored to medical context to predict a future diagnosis. We propose a medical context attention (MCA)-based RNN that is composed of an attention-based RNN and a conditional deep generative model. The novel attention mechanism utilizes the derived individual patient information from conditional variational autoencoders (CVAEs). The CVAE models a conditional distribution of patient embeddings and his/her demographics to provide the measurement of patient's phenotypic difference due to illness. Experimental results showed the effectiveness of the proposed model.
Publisher
Institute of Electrical and Electronics Engineers Inc.
Issue Date
2018-11-17
Language
English
Citation

18th IEEE International Conference on Data Mining, ICDM 2018, pp.1104 - 1109

DOI
10.1109/ICDM.2018.00143
URI
http://hdl.handle.net/10203/273638
Appears in Collection
IE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 28 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0