A Novel Hybrid Deep Neural Network to Predict Pre-impact Fall for Older People Based on Wearable Inertial Sensors

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 67
  • Download : 7
Falls in the elderly is a major public health concern due to its high prevalence, serious consequences and heavy burden on the society. Many falls in older people happen within a very short time, which makes it difficult to predict a fall before it occurs and then to provide protection for the person who is falling. The primary objective of this study was to develop deep neural networks for predicting a fall during its initiation and descending but before the body impacts to the ground so that a safety mechanism can be enabled to prevent fall-related injuries. We divided the falling process into three stages (non-fall, pre-impact fall and fall) and developed deep neutral networks to perform three-class classification. Three deep learning models, convolutional neural network (CNN), long short term memory (LSTM), and a novel hybrid model integrating both convolution and long short term memory (ConvLSTM) were proposed and evaluated on a large public dataset of various falls and activities of daily living (ADL) acquired with wearable inertial sensors (accelerometer and gyroscope). Fivefold cross validation results showed that the hybrid ConvLSTM model had mean sensitivities of 93.15, 93.78, and 96.00% for non-fall, pre-impact fall and fall, respectively, which were higher than both LSTM (except the fall class) and CNN models. ConvLSTM model also showed higher specificities for all three classes (96.59, 94.49, and 98.69%) than LSTM and CNN models. In addition, latency test on a microcontroller unit showed that ConvLSTM model had a short latency of 1.06 ms, which was much lower than LSTM model (3.15 ms) and comparable with CNN model (0.77 ms). High prediction accuracy (especially for pre-impact fall) and low latency on the microboard indicated that the proposed hybrid ConvLSTM model outperformed both LSTM and CNN models. These findings suggest that our proposed novel hybrid ConvLSTM model has great potential to be embedded into wearable inertial sensor-based systems to predict pre-impact fall in real-time so that protective devices could be triggered in time to prevent fall-related injuries for older people.
Publisher
FRONTIERS MEDIA SA
Issue Date
2020-02
Language
English
Article Type
Article
Citation

Frontiers in Bioengineering and Biotechnology, v.8, no.63

ISSN
2296-4185
DOI
10.3389/fbioe.2020.00063
URI
http://hdl.handle.net/10203/273386
Appears in Collection
IE-Journal Papers(저널논문)
Files in This Item
Author's Proof_Response_ShupingXiong_20200131.pdf(5.38 MB)Download
fbioe-08-00063.pdf(4.82 MB)Download

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0