Supersonic boundary-layer interactions with various micro-vortex generator geometries

Cited 9 time in webofscience Cited 0 time in scopus
  • Hit : 74
  • Download : 0
Various types of micro-vortex generators (mu VGs) are investigated for control of a supersonic turbulent boundary layer subject to an oblique shock impingement, which causes flow separation. The micro-vortex generators are embedded in the boundary layer to avoid excessive wave drag while still creating strong streamwise vortices to energise the boundary layer. Several different types of mu VGs were considered including micro-ramps and micro-vanes. These were investigated computationally in a supersonic boundary layer at Mach 3 using monotone integrated large eddy simulations (MILES). The results showed that vortices generated from mu VGs can partially eliminate shock induced flow separation and can continue to entrain high momentum flux for boundary-layer recovery downstream. The micro-ramps resulted in thinner downstream displacement thickness in comparison to the micro-vanes. However, the strength of the streamwise vorticity for the micro-ramps decayed faster due to dissipation especially after the shock interaction. In addition, the close spanwise distance between each vortex for the ramp geometry causes the vortex cores to move upwards from the wall due to induced upwash effects. Micro-vanes, on the other hand, yielded an increased spanwise spacing of the streamwise vortices at the point of formation. This resulted in streamwise vortices staying closer to the floor with less circulation decay, and the reduction in overall flow separation is attributed to these effects. Two hybrid concepts, named 'thick-vane' and 'split-ramp', were also studied where the former is a vane with side supports and the latter has a uniform spacing along the centreline of the baseline ramp. These geometries behaved similar to the micro-vanes in terms of the streamwise vorticity and the ability to reduce flow separation, but are more physically robust than the thin vanes.
Publisher
ROYAL AERONAUTICAL SOC
Issue Date
2009-11
Language
English
Article Type
Article
Citation

AERONAUTICAL JOURNAL, v.113, no.1149, pp.683 - 697

ISSN
0001-9240
DOI
10.1017/S0001924000003353
URI
http://hdl.handle.net/10203/272995
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0