On atmospheric stability in the dynamic wake meandering model

Cited 34 time in webofscience Cited 0 time in scopus
  • Hit : 87
  • Download : 0
The present study investigates a new approach for capturing the effects of atmospheric stability on wind turbine wake evolution and wake meandering by using the dynamic wake meandering model. The most notable impact of atmospheric stability on the wind is the changes in length and velocity scales of the atmospheric turbulence. The length and velocity scales in the turbulence are largely responsible for the way in which wind turbine wakes meander as they convect downstream. The hypothesis of the present work is that appropriate turbulence scales can be extracted from the oncoming atmospheric turbulence spectra and applied to the dynamic wake meandering model to capture the correct wake meandering behaviour. The ambient turbulence in all stability classes is generated using the Mann turbulence model, where the effects of non-neutral atmospheric stability are approximated by the selection of input parameters. In order to isolate the effect of atmospheric stability, simulations of neutral and unstable atmospheric boundary layers using large-eddy simulation are performed at the same streamwise turbulence intensity level. The turbulence intensity is kept constant by calibrating the surface roughness in the computational domain. The changes in the turbulent length scales due to the various atmospheric stability states impact the wake meandering characteristics and thus the power generation by the individual turbines. The proposed method is compared with results from both large-eddy simulation coupled with an actuator line model and field measurements, where generally good agreement is found with respect to the velocity, turbulence intensity and power predictions.
Publisher
WILEY
Issue Date
2014-11
Language
English
Article Type
Article
Citation

WIND ENERGY, v.17, no.11, pp.1689 - 1710

ISSN
1095-4244
DOI
10.1002/we.1662
URI
http://hdl.handle.net/10203/272841
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 34 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0