Origin of the Stability and Transition from Anionic to Cationic Surface Ligand Passivation of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals

Cited 33 time in webofscience Cited 21 time in scopus
  • Hit : 512
  • Download : 0
Recently, the structural stability of all-inorganic halide perovskite nanocrystals has been significantly enhanced. To understand the enhancement, we developed surface-passivation models for cubic CsPbBr3 nanocrystals with anionic (oleate) and cationic (oleylammonium) organic ligands based on first-principles calculations and nuclear magnetic resonance investigations. We propose that the (100) surface is initially terminated with oleate ligand complexes on PbBr2(100) surfaces. Also, the ligand transition to oleylammonium on the Pb-rich surfaces is expected due to the addition of metal halides (ZnBr2) during colloidal synthesis. The significant improvement in the structural stability of the cationic ligand-passivated CsPbBr3 nanocrystals was attributed to the suppressed exposure of the merging-vulnerable (110) surface, caused by the large difference in formation energy between the ligand-passivated (100) and Br-passivated (110) surfaces.
Publisher
AMER CHEMICAL SOC
Issue Date
2020-02
Language
English
Article Type
Article
Citation

JOURNAL OF PHYSICAL CHEMISTRY LETTERS, v.11, no.3, pp.652 - 658

ISSN
1948-7185
DOI
10.1021/acs.jpclett.9b03600
URI
http://hdl.handle.net/10203/272403
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 33 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0