Spin-Vibronic Model for Quantitative Prediction of Reverse Intersystem Crossing Rate in Thermally Activated Delayed Fluorescence Systems

Cited 51 time in webofscience Cited 32 time in scopus
  • Hit : 405
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Inkooko
dc.contributor.authorJeon, Soon Okko
dc.contributor.authorJeong, Daunko
dc.contributor.authorChoi, Hyeonhoko
dc.contributor.authorSon, Won-Joonko
dc.contributor.authorKim, Dongwookko
dc.contributor.authorRhee, Young Minko
dc.contributor.authorLee, Hyo Sugko
dc.date.accessioned2020-02-11T02:20:12Z-
dc.date.available2020-02-11T02:20:12Z-
dc.date.created2020-02-10-
dc.date.created2020-02-10-
dc.date.created2020-02-10-
dc.date.issued2020-01-
dc.identifier.citationJOURNAL OF CHEMICAL THEORY AND COMPUTATION, v.16, no.1, pp.621 - 632-
dc.identifier.issn1549-9618-
dc.identifier.urihttp://hdl.handle.net/10203/272232-
dc.description.abstractComputationally predicting reverse intersystem crossing (RISC) rates is important for designing new thermally activated delayed fluorescence (TADF) materials. We report a method that can quantitatively predict RISC rates by explicitly considering the spin-vibronic coupling mechanism. The coupling element of the spin-vibronic Hamiltonian is obtained by expanding the spin-orbit and the non-Born-Oppenheimer terms to second order and is then brought into the Golden Rule rate under the Condon approximation. The rate equation is solved directly in the time domain using a correlation function approach. The contributions of the first-order direct spin-orbit coupling and the second-order spin-vibronic coupling to an RISC rate can be quantitatively analyzed in a separate manner. We demonstrate the utility of the method by applying it to a representative TADF system, where we observe that the spin-vibronic portion is substantial but not dominant especially with a relatively small triplet singlet energy gap. Likewise, our method may elucidate the physical background of efficient nonradiative transitions from the lowest triplet to a higher lying singlet in other purely organic TADF systems, and it will be of great utility toward designing new such molecules.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleSpin-Vibronic Model for Quantitative Prediction of Reverse Intersystem Crossing Rate in Thermally Activated Delayed Fluorescence Systems-
dc.typeArticle-
dc.identifier.wosid000508474800048-
dc.identifier.scopusid2-s2.0-85077794346-
dc.type.rimsART-
dc.citation.volume16-
dc.citation.issue1-
dc.citation.beginningpage621-
dc.citation.endingpage632-
dc.citation.publicationnameJOURNAL OF CHEMICAL THEORY AND COMPUTATION-
dc.identifier.doi10.1021/acs.jctc.9b01014-
dc.contributor.localauthorRhee, Young Min-
dc.contributor.nonIdAuthorKim, Inkoo-
dc.contributor.nonIdAuthorJeon, Soon Ok-
dc.contributor.nonIdAuthorJeong, Daun-
dc.contributor.nonIdAuthorChoi, Hyeonho-
dc.contributor.nonIdAuthorSon, Won-Joon-
dc.contributor.nonIdAuthorKim, Dongwook-
dc.contributor.nonIdAuthorLee, Hyo Sug-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusCHARGE-TRANSFER-
dc.subject.keywordPlusPERTURBATION-THEORY-
dc.subject.keywordPlusORGANIC EMITTERS-
dc.subject.keywordPlusUP-CONVERSION-
dc.subject.keywordPlusTRIPLET-
dc.subject.keywordPlusSINGLET-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusORBIT-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusSTATES-
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 51 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0