Joint User Association and Beamforming Design for Millimeter Wave UDN With Wireless Backhaul

Cited 36 time in webofscience Cited 23 time in scopus
  • Hit : 458
  • Download : 0
As millimeter wave (mmWave) beamforming (BF) system can increase the areal capacity in ultra-dense network (UDN), a joint design of user association and hybrid BF is challenging due to the high feedback overhead and complicated interference management where many communication nodes use large antenna arrays. In addition, the wireless backhaul should be incorporated because it allows a flexible design, while the wired backhaul is difficult to be installed as the number of small base stations increases. To integrate the wireless backhaul and access, the time resource partitioning between the backhaul and access transmissions is needed, which affects the network performance combined with the user association and BF design. In this regard, this paper deals with the joint problem of the time resource allocation, user association, and BF design to maximize the weighted sum rate. Then a two-stage design approach is proposed based on the limited channel feedback to reduce the complexity and overhead. Simulation results show that the proposed limited feedback hybrid BF scheme outperforms the baseline schemes. In addition, we find that the maximum spatial multiplexing gain can be achieved if the number of antennas of each node increases with an order of larger than the square of the number of RF chains. At the same time, the multi-node diversity gain can be obtained in mmWave UDN, which depends on the path loss exponent of line-of-sight.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2019-12
Language
English
Article Type
Article
Citation

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, v.37, no.12, pp.2653 - 2668

ISSN
0733-8716
DOI
10.1109/JSAC.2019.2947926
URI
http://hdl.handle.net/10203/272162
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 36 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0