단원자 희박기체에서의 열전달 해석을 위한 모델 카이네틱 방정식의 직접 해석 기법Direct Numerical Solutions of Model Kinetic Equation for Heat Transfer Flows in a Monatomic Rarefied Gas

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 206
  • Download : 0
DC FieldValueLanguage
dc.contributor.author양태호ko
dc.contributor.author권오준ko
dc.date.accessioned2020-01-16T04:20:10Z-
dc.date.available2020-01-16T04:20:10Z-
dc.date.created2020-01-15-
dc.date.issued2019-03-
dc.identifier.citation한국전산유체공학회지, v.24, no.1, pp.8 - 18-
dc.identifier.issn1598-6071-
dc.identifier.urihttp://hdl.handle.net/10203/271301-
dc.description.abstractIn the present study, the heat conduction process in a monatomic rarefied gas was investigated based on the solution of the kinetic relaxation models for various Knudsen numbers. Generalization of the equilibrium distribution function in the model kinetic equation allows the correct estimation of the heat flux for arbitrary Prandtl numbers. The kinetic model equations in terms of newly defined density distribution functions are used to investigate two-dimensional heat transfer flows between two infinite walls of constant temperature ratio. The macroscopic flow variables were recovered by the integration of the resultant distribution functions with respect to longitudinal velocities. The steady solutions obtained by means of the current methodology are in good agreement with the solutions of the direct numerical analysis for the full Boltzmann equation. The temperature jumps at the solid surfaces were successfully evaluated from the deviation of the resultant distribution functions from local equilibrium states. It is concluded that the temperature jumps near the solid boundaries increase as the parameter for the rarefaction of the flow increases. This paper deals with the numerical simulation of the natural convection in a two-dimensional square filled with a monatomic gas. It is clearly shown that increasing the Knudsen number of the flow results in the increment of the relative jumps at the solid wall boundary.-
dc.languageKorean-
dc.publisher한국전산유체공학회-
dc.title단원자 희박기체에서의 열전달 해석을 위한 모델 카이네틱 방정식의 직접 해석 기법-
dc.title.alternativeDirect Numerical Solutions of Model Kinetic Equation for Heat Transfer Flows in a Monatomic Rarefied Gas-
dc.typeArticle-
dc.type.rimsART-
dc.citation.volume24-
dc.citation.issue1-
dc.citation.beginningpage8-
dc.citation.endingpage18-
dc.citation.publicationname한국전산유체공학회지-
dc.identifier.doi10.6112/kscfe.2019.24.1.008-
dc.identifier.kciidART002453335-
dc.contributor.localauthor권오준-
dc.description.isOpenAccessN-
dc.subject.keywordAuthor전산유체역학(Computational Fluid Dynamics)-
dc.subject.keywordAuthor볼츠만 수송 방정식(Boltzmann Transport Equation)-
dc.subject.keywordAuthor모델 카이네틱 방정식(Model Kinetic Equation)-
dc.subject.keywordAuthor희박기체 유동(Rarefied Gas Flows)-
dc.subject.keywordAuthor대류 열전달(Convective Heat Transfer)-
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0