Micromechanical active amplifiers using the mechanical resonance modulated by motion-dependent stiffness변위에 따른 탄성계수 변화를 이용한 기계적 공진의 변조 및 미소기계적 능동 증폭기

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 404
  • Download : 0
DC FieldValueLanguage
dc.contributor.advisorCho, Young-Ho-
dc.contributor.advisor조영호-
dc.contributor.authorHeo, Yun-Jung-
dc.contributor.author허윤정-
dc.date.accessioned2011-12-12T07:28:26Z-
dc.date.available2011-12-12T07:28:26Z-
dc.date.issued2006-
dc.identifier.urihttp://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=255489&flag=dissertation-
dc.identifier.urihttp://hdl.handle.net/10203/27119-
dc.description학위논문(석사) - 한국과학기술원 : 바이오시스템학과, 2006.2, [ x, 65 p. ]-
dc.description.abstractThis thesis presents micromechanical active amplifiers for high-sensitive microsensors and high-force actuators. The previous micromechanical passive amplifiers use lever mechanisms without energy sources, thus unable to amplify both displacement and force. The present devices, however, use carrier motion actuators (energy source) to apply the mechanical resonance modulated by variable springs, thereby amplifying displacement and force simultaneously. We design, fabricate, and characterize two types of the micromechanical active amplifiers, where we connect two different variable springs to the carrier motion actuators. The two variable springs have the identical initial stiffness of 10.2 ±0.8N/m while the variable springs A and B are designed to increase the stiffness change (0~1.69N/m) by the input motion (0~0.945μm) and to decrease the stiffness (2.37N/m) of the input part, respectively. The carrier motion actuators generate the identical resonant motion of 8.06±0.11μm at the different frequencies of 16.95kHz and 18.5kHz in the micromechanical active amplifiers A and B, respectively. In the experimental study of the micromechanical amplifiers, we verify that the present devices amplify both displacement and force: The amplifier A shows the displacement and force gains of 5.62 and 7.92 at the nonlinearity of 2.26% for the input motion of 0~0.945μm; The amplifier B shows the displacement and force gains of 2.62 and 11.6 at the nonlinearity of 1.52% for the input motion of 0~1.08μm. These results also indicate that the amplifier A has the higher displacement gain and the lower force gain compared to the amplifier B. We also characterize the motion interference in the amplifiers. In this characterization, we verify that the amplifier B, whose variable spring has small input stiffness, can reduce the motion interference: The carrier motions induce unwanted input motions of 0.214μm and 0.031μm in the amplifiers A and B, respectively; The input motions in...eng
dc.languageeng-
dc.publisher한국과학기술원-
dc.subjectmotion-dependent stiffness change-
dc.subjectmechanical resonance-
dc.subjectMicromechanical active amplifier-
dc.subjectdisplacement and force amplification-
dc.subject변위와 힘 증폭-
dc.subject변위에 따른 탄성계수 변화-
dc.subject기계적 공진-
dc.subject미소기계 능동 증폭기-
dc.titleMicromechanical active amplifiers using the mechanical resonance modulated by motion-dependent stiffness-
dc.title.alternative변위에 따른 탄성계수 변화를 이용한 기계적 공진의 변조 및 미소기계적 능동 증폭기-
dc.typeThesis(Master)-
dc.identifier.CNRN255489/325007 -
dc.description.department한국과학기술원 : 바이오시스템학과, -
dc.identifier.uid020043654-
dc.contributor.localauthorCho, Young-Ho-
dc.contributor.localauthor조영호-
Appears in Collection
BiS-Theses_Master(석사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0