Detecting energetically coupled interaction from multiple sequence alignments with the use of evolutionary conserved preference analysis진화적으로 보존되는 선호성 분석을 통한 에너지적으로 연결된 단백질 잔기간의 관계 예측

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 579
  • Download : 0
Knowing the functional or energetical coupling between two residues in a protein is important for extending our understanding of the protein regulation and functional mechanism. A new method of predicting such couplings between residues from multiple sequence alignment, named Evolutionary Conserved Preference Analysis (ECPA), is proposed in this thesis. The proposed method utilizes the fact that if a certain physical interaction network is functionally or structurally important to a protein, the interaction intensity in that network must be conserved in the evolutionary process. Performance of the method was tested and compared with a previous method, Statistical Coupling Analysis (SCA), by applying it to four known protein residues coupling data sets. The result of the test revealed that; i) in PDZ data set and C2H2 zinc finger data set, our ECPA and SCA method detected the highest coupled interaction relations; ii) in SNase data set and KSI data set, ECPA could detect energetically coupled interaction missed by SCA method. These results indicate that the evolutionary conserved preference is a reliable measure to detect energetically and functionally coupled interactions, and ECPA method and SCA can be used complementarily.
Advisors
Kim, Dong-Supresearcher김동섭researcher
Description
한국과학기술원 : 바이오시스템학과,
Publisher
한국과학기술원
Issue Date
2005
Identifier
249557/325007  / 020033929
Language
eng
Description

학위논문(석사) - 한국과학기술원 : 바이오시스템학과, 2005.8, [ vi, 24 p. ]

Keywords

ECPA; MSA; 에너지적으로 연결된 관계; 다중서열정렬; energetically coupled interaction

URI
http://hdl.handle.net/10203/27111
Link
http://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=249557&flag=dissertation
Appears in Collection
BiS-Theses_Master(석사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0