Bayesian's eye on molecular science: Bayesian deep optimization of Onsager-Machlup action learning for uncertainty quantification and active learning of molecular properties

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 152
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorRyu, Seongokko
dc.contributor.authorKwon, Yongchanko
dc.contributor.authorHwang, Sang-Yeonko
dc.contributor.authorKim, Woo Younko
dc.date.accessioned2019-12-30T10:20:29Z-
dc.date.available2019-12-30T10:20:29Z-
dc.date.created2019-12-30-
dc.date.issued2019-11-04-
dc.identifier.citationThe 5 th International Conference on Molecular Simulation-
dc.identifier.urihttp://hdl.handle.net/10203/270780-
dc.languageEnglish-
dc.publisherThe Korean Institute of Metals and Materials, The Korea Institute of Science and Technology, Korea Advanced Institute of Science and Technology - ACE Team, Seoul National University-
dc.titleBayesian's eye on molecular science: Bayesian deep optimization of Onsager-Machlup action learning for uncertainty quantification and active learning of molecular properties-
dc.typeConference-
dc.type.rimsCONF-
dc.citation.publicationnameThe 5 th International Conference on Molecular Simulation-
dc.identifier.conferencecountryKO-
dc.identifier.conferencelocationLotte Hotel Jeju-
dc.contributor.localauthorKim, Woo Youn-
dc.contributor.nonIdAuthorRyu, Seongok-
dc.contributor.nonIdAuthorKwon, Yongchan-
dc.contributor.nonIdAuthorHwang, Sang-Yeon-
Appears in Collection
CH-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0