Porosity controlled 3D SnO2 spheres via electrostatic spray: Selective acetone sensors

Cited 46 time in webofscience Cited 35 time in scopus
  • Hit : 482
  • Download : 0
Tailoring of semiconducting metal oxides (SMOs) nanostructures with high porosity is of importance for enhanced gas sensing performance. Hierarchically-assembled SMOs possess high surface area but often suffer from low porosity. Here, bimodal pore-loaded hierarchical SnO2 (PH-SnO2) spheres were successfully synthesized via electrostatic spraying method (e-spraying) combined with colloidal templating route using polystyrene beads. The resulting porous PH-SnO2 spheres were used as sensing layers for detection of acetone, which exhibited about 20 % enhanced response compared with hierarchical SnO2 (H-SnO2) spheres without pores. In addition, e-spraying is a fascinating technique for uniform catalytic functionalization through a simple dispersion of catalytic nanoparticle (NPs) in the e-spraying solution to improve the sensing performance. As a result, the Pt-functionalized PH-SnO2 (Pt-PH-SnO2) spheres showed dramatically improved acetone detection capability with a response (R-air/R-gas) of 44.83 at 5 ppm as compared to PH-SnO2 spheres (R-air/R-gas= 6.61) as well as superior selectivity. In this work, the unique combination of e-spraying and PS templating route paves the way for robust and facile synthetic method for bimodal pore loaded 3D hierarchical SMOs, and demonstrates the feasibility for application in exhaled breath sensors.
Publisher
ELSEVIER SCIENCE SA
Issue Date
2020-02
Language
English
Article Type
Article
Citation

SENSORS AND ACTUATORS B-CHEMICAL, v.304

ISSN
0925-4005
DOI
10.1016/j.snb.2019.127350
URI
http://hdl.handle.net/10203/270265
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 46 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0