Marginal Magnesium Doping for High-Performance Lithium Metal Batteries

Cited 48 time in webofscience Cited 27 time in scopus
  • Hit : 1050
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorChoi, Seung Hoko
dc.contributor.authorLee, Seung Jongko
dc.contributor.authorYoo, Dong-Jooko
dc.contributor.authorPark, Jun Hoko
dc.contributor.authorPark, Jae-Hyukko
dc.contributor.authorKo, You Nako
dc.contributor.authorPark, Jungjinko
dc.contributor.authorSung, Yung-Eunko
dc.contributor.authorChung, Sung-Yoonko
dc.contributor.authorKim, Heejinko
dc.contributor.authorChoi, Jang Wookko
dc.date.accessioned2019-12-20T06:22:18Z-
dc.date.available2019-12-20T06:22:18Z-
dc.date.created2019-10-01-
dc.date.issued2019-11-
dc.identifier.citationADVANCED ENERGY MATERIALS, v.9, no.41, pp.1902278-
dc.identifier.issn1614-6832-
dc.identifier.urihttp://hdl.handle.net/10203/270037-
dc.description.abstractDue to unparalleled theoretical capacity and operation voltage, metallic Li is considered as the most attractive candidate for lithium-ion battery anodes. However, Li metal electrodes suffer from uncontrolled dendrite growth and consequent interfacial instability, which result in an unacceptable level of performance in cycling stability and safety. Herein, it is reported that a marginal amount (1.5 at%) of magnesium (Mg) doping alters the surface properties of Li metal foil drastically in such a way that upon Li plating, a highly dense Li whisker layer is induced, instead of sharp dendrites, with enhanced interfacial stability and cycling performance. The effect of Mg doping is explained in terms of increased surface energy, which facilitates plating of Li onto the main surface over the existing whiskers. The present study offers a useful guideline for Li metal batteries, as it largely resolves the longstanding shortcoming of Li metal electrodes without significantly sacrificing their main advantages.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleMarginal Magnesium Doping for High-Performance Lithium Metal Batteries-
dc.typeArticle-
dc.identifier.wosid000486873300001-
dc.type.rimsART-
dc.citation.volume9-
dc.citation.issue41-
dc.citation.beginningpage1902278-
dc.citation.publicationnameADVANCED ENERGY MATERIALS-
dc.identifier.doi10.1002/aenm.201902278-
dc.contributor.localauthorChung, Sung-Yoon-
dc.contributor.nonIdAuthorYoo, Dong-Joo-
dc.contributor.nonIdAuthorPark, Jun Ho-
dc.contributor.nonIdAuthorPark, Jae-Hyuk-
dc.contributor.nonIdAuthorKo, You Na-
dc.contributor.nonIdAuthorPark, Jungjin-
dc.contributor.nonIdAuthorSung, Yung-Eun-
dc.contributor.nonIdAuthorKim, Heejin-
dc.contributor.nonIdAuthorChoi, Jang Wook-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthoradsorption energy-
dc.subject.keywordAuthordensity functional theory-
dc.subject.keywordAuthorinterfacial energy-
dc.subject.keywordAuthorlithium metal anodes-
dc.subject.keywordAuthorsurface energy-
dc.subject.keywordPlusSOLID-ELECTROLYTE INTERPHASES-
dc.subject.keywordPlusANODE-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusEFFICIENCY-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusION-
dc.subject.keywordPlusMG-
Appears in Collection
EEW-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 48 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0