Systematic Investigation of the Wavelength-Dependent Upconversion Enhancement Induced by Single Plasmonic Nanoparticles

Cited 8 time in webofscience Cited 5 time in scopus
  • Hit : 181
  • Download : 0
A convenient method was developed to systematically study the wavelength-dependent upconversion enhancement induced by single plasmonic nanoparticles to overcome unavoidable variations of nanoparticle geometry in practical synthesis techniques. Gold nanospheres and gold nanotriangles coupled to an upconversion nanoparticle monolayer were selected to compare emission and excitation resonance couplings, respectively. The emission intensity of a upconversion nanoparticle monolayer coupled with gold nanospheres (i.e., emission coupling) was found to be slightly lower than that of a reference upconversion nanoparticle monolayer, independent of pumping power. In turn, the emission intensity of a upconversion nanoparticle monolayer coupled with a gold nanotriangle (i.e., excitation coupling) showed an enhancement factor of the emission intensity of about 3.26 at low pumping power, which decreased to 0.48 at high pumping power because of a local heating effect. Our method could provide a convenient strategy for massive data collection of coupled upconversion nanoparticles and plasmonic nanoparticles in a single-particle level and a guideline for systematic investigations involving plasmonic nanoparticles.
Publisher
AMER CHEMICAL SOC
Issue Date
2018-06
Language
English
Article Type
Article
Citation

JOURNAL OF PHYSICAL CHEMISTRY C, v.122, no.24, pp.13047 - 13053

ISSN
1932-7447
DOI
10.1021/acs.jpcc.8b02437
URI
http://hdl.handle.net/10203/269917
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0