Undulatory Topographical Waves for Flow-Induced Foulant Sweeping

Cited 11 time in webofscience Cited 0 time in scopus
  • Hit : 295
  • Download : 63
Diverse bioinspired antifouling strategies have demonstrated effective fouling-resistant properties with good biocompatibility, sustainability, and long-term activity. However, previous studies on bioinspired antifouling materials have mainly focused on material aspects or static architectures of nature without serious consideration of kinetic topographies or dynamic motion. Here, we propose a magnetically responsive multilayered composite that can generate coordinated, undulatory topographical waves with controlled length and time scales as a new class of dynamic antifouling materials. The undulatory surface waves of the dynamic composite induce local and global vortices near the material surface and thereby sweep away foulants from the surface, fundamentally inhibiting their initial attachment. As a result, the dynamic composite material with undulating topographical waves provides an effective means for efficient suppression of biofilm formation without surface modification with chemical moieties or nanoscale architectures.
Publisher
AMER ASSOC ADVANCEMENT SCIENCE
Issue Date
2019-11
Language
English
Article Type
Article
Citation

SCIENCE ADVANCES, v.5, no.11

ISSN
2375-2548
DOI
10.1126/sciadv.aax8935
URI
http://hdl.handle.net/10203/269766
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
eaax8935.full.pdf(6.16 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0