NVMMU: A Non-volatile Memory Management Unit for Heterogeneous GPU-SSD Architectures

Cited 28 time in webofscience Cited 33 time in scopus
  • Hit : 215
  • Download : 0
Thanks to massive parallelism in modern Graphics Processing Units (GPUs), emerging data processing applications in GPU computing exhibit ten-fold speedups compared to CPU-only systems. However, this GPU-based acceleration is limited in many cases by the significant data movement overheads and inefficient memory management for host-side storage accesses. To address these shortcomings, this paper proposes a non-volatile memory management unit (NVMMU) that reduces the file datamovement overheads by directly connecting the Solid State Disk (SSD) to the GPU. We implemented our proposed NVMMU on a real hardware with commercially available GPU and SSD devices by considering different types of storage interfaces and configurations. In this work, NVMMU unifies two discrete software stacks (one for the SSD and other for the GPU) in two major ways. While a new interface provided by our NVMMU directly forwards file data between the GPU runtime library and the I/O runtime library, it supports non-volatile direct memory access (NDMA) that pairs those GPU and SSD devices via physically shared system memory blocks. This unification in turn can eliminate unnecessary user/kernel-mode switching, improve memory management, and remove data copy overheads. Our evaluation results demonstrate that NVMMU can reduce the overheads of file data movement by 95% on average, improving overall system performance by 78% compared to a conventional IOMMU approach.
Publisher
ACM and IEEE Computer Society
Issue Date
2015-10-18
Language
English
Citation

24th International Conference on Parallel Architecture and Compilation, PACT 2015, pp.13 - 24

DOI
10.1109/PACT.2015.43
URI
http://hdl.handle.net/10203/269655
Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 28 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0