DUANG: Fast and lightweight page migration in asymmetric memory systems

Cited 5 time in webofscience Cited 9 time in scopus
  • Hit : 204
  • Download : 0
Main memory systems have gone through dramatic increases in bandwidth and capacity. At the same time, their random access latency has remained relatively constant. For given memory technology, optimizing the latency typically requires sacrificing the density (i.e., cost per bit), which is one of the most critical concerns for memory industry. Recent studies have proposed memory architectures comprised of asymmetric (fast/low-density and slow/high-density) regions to optimize between overall latency and negative impact on density. Such memory architectures attempt to cost-effectively offer both high capacity and high performance. Yet they present a unique challenge, requiring direct placements of hot memory pages1 in the fast region and/or expensive runtime page migrations. In this paper, we propose a novel resistive memory architecture sharing a set of row buffers between a pair of neighboring banks. It enables two attractive techniques: (1) migrating memory pages between slow and fast banks with little performance overhead and (2) adaptively allocating more row buffers to busier banks based on memory access patterns. For an asymmetric memory architecture with both slow/high-density and fast/low-density banks, our shared row-buffer architecture can capture 87-93% of the performance of a memory architecture with only fast banks.
Publisher
IEEE Computer Society
Issue Date
2016-03-12
Language
English
Citation

22nd IEEE International Symposium on High Performance Computer Architecture, HPCA 2016, pp.481 - 493

DOI
10.1109/HPCA.2016.7446088
URI
http://hdl.handle.net/10203/269645
Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0